976 resultados para function estimation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El control del estado en el que se encuentran las estructuras ha experimentado un gran auge desde hace varias décadas, debido a que los costes de rehabilitación de estructuras tales como los oleoductos, los puentes, los edificios y otras más son muy elevados. En las últimas dos décadas, se han desarrollado una gran cantidad de métodos que permiten identificar el estado real de una estructura, basándose en modelos físicos y datos de ensayos. El ensayo modal es el más común; mediante el análisis modal experimental de una estructura se pueden determinar parámetros como la frecuencia, los modos de vibración y la amortiguación y también la función de respuesta en frecuencia de la estructura. Mediante estos parámetros se pueden implementar diferentes indicadores de daño. Sin embargo, para estructuras complejas y grandes, la implementación de metodologías basadas en la función de respuesta en frecuencia requeriría realizar hipótesis sobre la fuerza utilizada para excitar la estructura. Dado que el análisis modal operacional utiliza solamente las señales de respuesta del sistema para extraer los parámetros dinámicos estructurales y, por tanto, para evaluar el estado de una estructura, el uso de la transmisibilidad sería posible. En este sentido, dentro del análisis modal operacional, la transmisibilidad ha concentrado mucha atención en el mundo científico en la última década. Aunque se han publicado muchos trabajos sobre el tema, en esta Tesis se proponen diferentes técnicas para evaluar el estado de una estructura basándose exclusivamente en la transmisibilidad. En primer lugar, se propone un indicador de daño basado en un nuevo parámetro, la coherencia de transmisibilidad; El indicador se ha valido mediante resultados numéricos y experimentales obtenidos sobre un pórtico de tres pisos. En segundo lugar, la distancia de Mahalanobis se aplica sobre la transmisibilidad como procedimiento para detectar variaciones estructurales provocadas por el daño. Este método se ha validado con éxito sobre una viga libre-libre ensayada experimentalmente. En tercer lugar, se ha implementado una red neuronal basada en medidas de transmisibilidad como metodología de predicción de daño sobre una viga simulada numéricamente. ABSTRACT Structural health monitoring has experienced a huge development from several decades ago since the cost of rehabilitation of structures such as oil pipes, bridges and tall buildings is very high. In the last two decades, a lot of methods able to identify the real stage of a structure have been developed basing on both models and experimental data. Modal testing is the most common; by carrying out the experimental modal analysis of a structure, some parameters, such as frequency, mode shapes and damping, as well as the frequency response function of the structure can be obtained. From these parameters, different damage indicators have been proposed. However, for complex and large structures, any frequency domain approach that relies on frequency response function estimation would be of difficult application since an assumption of the input excitations to the system should be carried out. Operational modal analysis uses only output signals to extract the structural dynamic parameters and, therefore, to identify the structural stage. In this sense, within operational modal analysis, transmissibility has attracted a lot of attention in the scientific field in the last decade. In this work new damage detection approaches based on transmissibility are developed. Firstly, a new theory of transmissibility coherence is developed and it is tested with a three-floor-structure both in simulation and in experimental data analysis; secondly, Mahalanobis distance is taken into use with the transmissibility, and a free-free beam is used to test the approach performance; thirdly, neural networks are used in transmissibility for structural health monitoring; a simulated beam is used to validate the proposed method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El control del estado en el que se encuentran las estructuras ha experimentado un gran auge desde hace varias décadas, debido a que los costes de rehabilitación de estructuras tales como los oleoductos, los puentes, los edificios y otras más son muy elevados. En las últimas dos décadas, se han desarrollado una gran cantidad de métodos que permiten identificar el estado real de una estructura, basándose en modelos físicos y datos de ensayos. El ensayo modal es el más común; mediante el análisis modal experimental de una estructura se pueden determinar parámetros como la frecuencia, los modos de vibración y la amortiguación y también la función de respuesta en frecuencia de la estructura. Mediante estos parámetros se pueden implementar diferentes indicadores de daño. Sin embargo, para estructuras complejas y grandes, la implementación de metodologías basadas en la función de respuesta en frecuencia requeriría realizar hipótesis sobre la fuerza utilizada para excitar la estructura. Dado que el análisis modal operacional utiliza solamente las señales de respuesta del sistema para extraer los parámetros dinámicos estructurales y, por tanto, para evaluar el estado de una estructura, el uso de la transmisibilidad sería posible. En este sentido, dentro del análisis modal operacional, la transmisibilidad ha concentrado mucha atención en el mundo científico en la última década. Aunque se han publicado muchos trabajos sobre el tema, en esta Tesis se proponen diferentes técnicas para evaluar el estado de una estructura basándose exclusivamente en la transmisibilidad. En primer lugar, se propone un indicador de daño basado en un nuevo parámetro, la coherencia de transmisibilidad; El indicador se ha valido mediante resultados numéricos y experimentales obtenidos sobre un pórtico de tres pisos. En segundo lugar, la distancia de Mahalanobis se aplica sobre la transmisibilidad como procedimiento para detectar variaciones estructurales provocadas por el daño. Este método se ha validado con éxito sobre una viga libre-libre ensayada experimentalmente. En tercer lugar, se ha implementado una red neuronal basada en medidas de transmisibilidad como metodología de predicción de daño sobre una viga simulada numéricamente. ABSTRACT Structural health monitoring has experienced a huge development from several decades ago since the cost of rehabilitation of structures such as oil pipes, bridges and tall buildings is very high. In the last two decades, a lot of methods able to identify the real stage of a structure have been developed basing on both models and experimental data. Modal testing is the most common; by carrying out the experimental modal analysis of a structure, some parameters, such as frequency, mode shapes and damping, as well as the frequency response function of the structure can be obtained. From these parameters, different damage indicators have been proposed. However, for complex and large structures, any frequency domain approach that relies on frequency response function estimation would be of difficult application since an assumption of the input excitations to the system should be carried out. Operational modal analysis uses only output signals to extract the structural dynamic parameters and, therefore, to identify the structural stage. In this sense, within operational modal analysis, transmissibility has attracted a lot of attention in the scientific field in the last decade. In this work new damage detection approaches based on transmissibility are developed. Firstly, a new theory of transmissibility coherence is developed and it is tested with a three-floor-structure both in simulation and in experimental data analysis; secondly, Mahalanobis distance is taken into use with the transmissibility, and a free-free beam is used to test the approach performance; thirdly, neural networks are used in transmissibility for structural health monitoring; a simulated beam is used to validate the proposed method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The classical problem of agricultural productivity measurement has regained interest owing to recent price hikes in world food markets. At the same time, there is a new methodological debate on the appropriate identification strategies for addressing endogeneity and collinearity problems in production function estimation. We examine the plausibility of four established and innovative identification strategies for the case of agriculture and test a set of related estimators using farm-level panel datasets from seven EU countries. The newly suggested control function and dynamic panel approaches provide attractive conceptual improvements over the received ‘within’ and duality models. Even so, empirical implementation of the conceptual sophistications built into these estimators does not always live up to expectations. This is particularly true for the dynamic panel estimator, which mostly failed to identify reasonable elasticities for the (quasi-) fixed factors. Less demanding proxy approaches represent an interesting alternative for agricultural applications. In our EU sample, we find very low shadow prices for labour, land and fixed capital across countries. The production elasticity of materials is high, so improving the availability of working capital is the most promising way to increase agricultural productivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activation functions within neural networks play a crucial role in Deep Learning since they allow to learn complex and non-trivial patterns in the data. However, the ability to approximate non-linear functions is a significant limitation when implementing neural networks in a quantum computer to solve typical machine learning tasks. The main burden lies in the unitarity constraint of quantum operators, which forbids non-linearity and poses a considerable obstacle to developing such non-linear functions in a quantum setting. Nevertheless, several attempts have been made to tackle the realization of the quantum activation function in the literature. Recently, the idea of the QSplines has been proposed to approximate a non-linear activation function by implementing the quantum version of the spline functions. Yet, QSplines suffers from various drawbacks. Firstly, the final function estimation requires a post-processing step; thus, the value of the activation function is not available directly as a quantum state. Secondly, QSplines need many error-corrected qubits and a very long quantum circuits to be executed. These constraints do not allow the adoption of the QSplines on near-term quantum devices and limit their generalization capabilities. This thesis aims to overcome these limitations by leveraging hybrid quantum-classical computation. In particular, a few different methods for Variational Quantum Splines are proposed and implemented, to pave the way for the development of complete quantum activation functions and unlock the full potential of quantum neural networks in the field of quantum machine learning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In longitudinal studies of disease, patients may experience several events through a follow-up period. In these studies, the sequentially ordered events are often of interest and lead to problems that have received much attention recently. Issues of interest include the estimation of bivariate survival, marginal distributions and the conditional distribution of gap times. In this work we consider the estimation of the survival function conditional to a previous event. Different nonparametric approaches will be considered for estimating these quantities, all based on the Kaplan-Meier estimator of the survival function. We explore the finite sample behavior of the estimators through simulations. The different methods proposed in this article are applied to a data set from a German Breast Cancer Study. The methods are used to obtain predictors for the conditional survival probabilities as well as to study the influence of recurrence in overall survival.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

QUESTIONS UNDER STUDY AND PRINCIPLES: Estimating glomerular filtration rate (GFR) in hospitalised patients with chronic kidney disease (CKD) is important for drug prescription but it remains a difficult task. The purpose of this study was to investigate the reliability of selected algorithms based on serum creatinine, cystatin C and beta-trace protein to estimate GFR and the potential added advantage of measuring muscle mass by bioimpedance. In a prospective unselected group of patients hospitalised in a general internal medicine ward with CKD, GFR was evaluated using inulin clearance as the gold standard and the algorithms of Cockcroft, MDRD, Larsson (cystatin C), White (beta-trace) and MacDonald (creatinine and muscle mass by bioimpedance). 69 patients were included in the study. Median age (interquartile range) was 80 years (73-83); weight 74.7 kg (67.0-85.6), appendicular lean mass 19.1 kg (14.9-22.3), serum creatinine 126 μmol/l (100-149), cystatin C 1.45 mg/l (1.19-1.90), beta-trace protein 1.17 mg/l (0.99-1.53) and GFR measured by inulin 30.9 ml/min (22.0-43.3). The errors in the estimation of GFR and the area under the ROC curves (95% confidence interval) relative to inulin were respectively: Cockcroft 14.3 ml/min (5.55-23.2) and 0.68 (0.55-0.81), MDRD 16.3 ml/min (6.4-27.5) and 0.76 (0.64-0.87), Larsson 12.8 ml/min (4.50-25.3) and 0.82 (0.72-0.92), White 17.6 ml/min (11.5-31.5) and 0.75 (0.63-0.87), MacDonald 32.2 ml/min (13.9-45.4) and 0.65 (0.52-0.78). Currently used algorithms overestimate GFR in hospitalised patients with CKD. As a consequence eGFR targeted prescriptions of renal-cleared drugs, might expose patients to overdosing. The best results were obtained with the Larsson algorithm. The determination of muscle mass by bioimpedance did not provide significant contributions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estimer la filtration glomérulaire chez les personnes âgées, tout en tenant compte de la difficulté supplémentaire d'évaluer leur masse musculaire, est difficile et particulièrement important pour la prescription de médicaments. Le taux plasmatique de la creatinine dépend à la fois de la fraction d'élimination rénale et extra-rénale et de la masse musculaire. Actuellement, pour estimer là filtration glomérulaire différentes formules sont utilisées, qui se fondent principalement sur la valeur de la créatinine. Néanmoins, en raison de la fraction éliminée par les voies tubulaires et intestinales la clairance de la créatinine surestime généralement le taux de filtration glomérulaire (GFR). Le but de cette étude est de vérifier la fiabilité de certains marqueurs et algorithmes de la fonction rénale actuellement utilisés et d'évaluer l'avantage additionnel de prendre en considération la masse musculaire mesurée par la bio-impédance dans une population âgée (> 70 ans) et avec une fonction rénale chronique compromise basée sur MDRD eGFR (CKD stades lll-IV). Dans cette étude, nous comparons 5 équations développées pour estimer la fonction rénale et basées respectivement sur la créatinine sérique (Cockcroft et MDRD), la cystatine C (Larsson), la créatinine combinée à la bêta-trace protéine (White), et la créatinine ajustée à la masse musculaire obtenue par analyse de la bio-impédance (MacDonald). La bio-impédance est une méthode couramment utilisée pour estimer la composition corporelle basée sur l'étude des propriétés électriques passives et de la géométrie des tissus biologiques. Cela permet d'estimer les volumes relatifs des différents tissus ou des fluides dans le corps, comme par exemple l'eau corporelle totale, la masse musculaire (=masse maigre) et la masse grasse corporelle. Nous avons évalué, dans une population âgée d'un service interne, et en utilisant la clairance de l'inuline (single shot) comme le « gold standard », les algorithmes de Cockcroft (GFR CKC), MDRD, Larsson (cystatine C, GFR CYS), White (beta trace protein, GFR BTP) et Macdonald (GFR = ALM, la masse musculaire par bio-impédance. Les résultats ont montré que le GFR (mean ± SD) mesurée avec l'inuline et calculée avec les algorithmes étaient respectivement de : 34.9±20 ml/min pour l'inuline, 46.7±18.5 ml/min pour CKC, 47.2±23 ml/min pour CYS, 54.4±18.2ml/min pour BTP, 49±15.9 ml/min pour MDRD et 32.9±27.2ml/min pour ALM. Les courbes ROC comparant la sensibilité et la spécificité, l'aire sous la courbe (AUC) et l'intervalle de confiance 95% étaient respectivement de : CKC 0 68 (055-0 81) MDRD 0.76 (0.64-0.87), Cystatin C 0.82 (0.72-0.92), BTP 0.75 (0.63-0.87), ALM 0.65 (0.52-0.78). ' En conclusion, les algorithmes comparés dans cette étude surestiment la GFR dans la population agee et hospitalisée, avec des polymorbidités et une classe CKD lll-IV. L'utilisation de l'impédance bioelectrique pour réduire l'erreur de l'estimation du GFR basé sur la créatinine n'a fourni aucune contribution significative, au contraire, elle a montré de moins bons résultats en comparaison aux autres equations. En fait dans cette étude 75% des patients ont changé leur classification CKD avec MacDonald (créatinine et masse musculaire), contre 49% avec CYS (cystatine C), 56% avec MDRD,52% avec Cockcroft et 65% avec BTP. Les meilleurs résultats ont été obtenus avec Larsson (CYS C) et la formule de Cockcroft.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Growing concerns about toxicity and development of resistance against synthetic herbicides have demanded looking for alternative weed management approaches. Allelopathy has gained sufficient support and potential for sustainable weed management. Aqueous extracts of six plant species (sunflower, rice, mulberry, maize, brassica and sorghum) in different combinations alone or in mixture with 75% reduced dose of herbicides were evaluated for two consecutive years under field conditions. A weedy check and S-metolachlor with atrazine (pre emergence) and atrazine alone (post emergence) at recommended rates was included for comparison. Weed dynamics, maize growth indices and yield estimation were done by following standard procedures. All aqueous plant extract combinations suppressed weed growth and biomass. Moreover, the suppressive effect was more pronounced when aqueous plant extracts were supplemented with reduced doses of herbicides. Brassica-sunflower-sorghum combination suppressed weeds by 74-80, 78-70, 65-68% during both years of study that was similar with S-metolachlor along half dose of atrazine and full dose of atrazine alone. Crop growth rate and dry matter accumulation attained peak values of 32.68 and 1,502 g m-2 d-1 for brassica-sunflower-sorghum combination at 60 and 75 days after sowing. Curve fitting regression for growth and yield traits predicted strong positive correlation to grain yield and negative correlation to weed dry biomass under allelopathic weed management in maize crop.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The attached file is created with Scientific Workplace Latex