921 resultados para framework structure


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the structure of CH6N3+ C6H6AsO3- . CH5N3 . 2H2O, the phenylarsonate anion gives two R2/2(8) cyclic hydrogen-bonding interactions, one with a guanidinium cation, the other with a guanidine molecule. The anions are also bridged by the water molecules, one of which completes a cyclic R3/5(9) hydrogen-bonding association with the guanidinum cation, conjoint with one of the three R^2^~2~(8) associations about that ion, as well as forming an R1/2(6) cyclic association with the guanidine molecule. The result is a three-dimensional framework structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure of title compound, the anhydrous guanidinium salt, CH6N3+ C7H4NO4- shows a three-dimensional structure in which the guanidinium cation is involved in three cyclic R1/2(6) hydrogen-bonding associations with separate carboxylate O-acceptors. Further peripheral associations include a cyclic R2/1(4)cation--anion interaction, forming inter-linked undulating sheets in the framework structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the structure of title compound, 2(C3H5N2^+^) C~6~H~8~O~8~^2-^ . 2H~2~O the galactarate dianions have crystallographic inversion symmetry and together with the water molecules of solvation form hydrogen-bonded sheet substructures which extend along the (110) planes in the unit cell. The imidazolium cations link these sheets peripherally down c through carboxyl O...H-N,N'---H...O(hydroxyl) bridges, giving a three-dimensional framework structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the title isonipecotamide salt 2C6H13N2O+.C12H8O6S22-,the asymmetric unit comprises one biphenyl-4,4'-disulfonate dianion which lies across a crystallographic inversion centre and another in a general position [dihedral angle between the two phenyl rings is 37.1(1)deg], together with three isonipecotamide cations. Two of these cations give a cyclic homomeric amide-amide dimer interaction [graph set R2/2(8)],the other giving a similar dimeric interaction but across an inversion centre, both dimers then forming lateral cyclic R2/4(8) pyrimidinium N-H...O interactions. These units are linked longitudinally to the sulfonate groups of the dianions through piperidinium N-H...O hydrogen bonds, giving a three-dimensional framework structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the structure of the title compound, C6H13N2O+ C2H3O2- . H2O, the amide H atoms of the cations form centrosymetric cyclic hydrogen-bonding associations incorporating two water molecules [graph set R^2^~4~(8)], which are conjoint with cyclic water-bridged amide-amide associations [R^4^~4~(12)] and larger R4/4(20) associations involving the water molecule and the acetate anions, which bridge through the piperidinium H donors, giving an overall three-dimensional framework structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the structure of polymeric title compound, {[Co2(C7H2N2O7)2(H2O)6] . 2H2O}n from the reaction of 3,5-dinitrosalicylic acid with cobalt(II) acetate, both slightly distorted octahedral Co(II) centres have crystallographic inversion symmetry. The coordination sphere about one Co centre comprises four O donors from two bidentate chelate O(phenolate), O(carboxyl) and bridging dianionic ligands and two water molecules [Co-O range, 2.0249(11)-2.1386(14)A] while that about the second Co centre has four water molecules and two bridging carboxyl O donor atoms [Co-O range, 2.0690(14)-2.1364(11)A]. The coordinated water molecules as well as the water molecules of solvation give water-water and water-carboxyl hydrogen-bonding interactions in the three-dimensional framework structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zeolite N, an EDI type framework structure with ideal chemical formula K12Al10Si10O40Cl2•5H2O, was produced from kaolin between 100oC and 200oC in a continuously stirred reactor using potassic and potassic+sodic liquors containing a range of anions. Reactions using liquors such as KOH, KOH + KX (where X = F, Cl, Br, I, NO3, NO2), K2X (where X=CO3), KOH + NaCl or NaOH + KCl were complete (>95% product) in less than two hours depending on the batch composition and temperature of reaction. With KOH and KCl in the reaction mixture and H2O/Al2O3~49, zeolite N was formed over a range of concentrations (1M < [KOH] < 18M) and reaction times (0.5h < t < 60h). At higher temperatures or higher KOH molarity, other potassic phases such as kalsilite or kaliophyllite formed. In general, temperature and KOH molarity defined the extent of zeolite N formation under these conditions. The introduction of sodic reagents to the starting mixture or use of one potassic reagent in the starting mixture reduced the stability field for zeolite N formation. Zeolite N was also formed using zeolite 4A as a source of Al and Si albeit for longer reaction times at a particular temperature when compared with kaolin as the source material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The racemic title compound, C9H11NO4 . H2O, a tricyclic rearranged aminonorbornane dicarboxylic acid is a conformationally rigid analogue of glutamic acid and exists as an ammonium-carboxylate zwitterion, with the bridghead carboxylic acid group anti-related. In the crystal, intermolecular N-H...O and O-H...O hydrogen-bonding interactions involving the ammonium, carboxylic acid and water donor groups with both water and carboxyl O-atom acceptors give a three-dimensional framework structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular modelling has become a useful and widely applied tool to investigate separation and diffusion behavior of gas molecules through nano-porous low dimensional carbon materials, including quasi-1D carbon nanotubes and 2D graphene-like carbon allotropes. These simulations provide detailed, molecular level information about the carbon framework structure as well as dynamics and mechanistic insights, i.e. size sieving, quantum sieving, and chemical affinity sieving. In this perspective, we revisit recent advances in this field and summarize separation mechanisms for multicomponent systems from kinetic and equilibrium molecular simulations, elucidating also anomalous diffusion effects induced by the confining pore structure and outlining perspectives for future directions in this field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structures of two ammonium salts of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) have been determined at 200 K. In the 1:1 hydrated salt, ammonium 3-carboxy-4-hydroxybenzenesulfonate monohydrate, NH4+·C7H5O6S-·H2O, (I), the 5-SSA- monoanions give two types of head-to-tail laterally linked cyclic hydrogen-bonding associations, both with graph-set R44(20). The first involves both carboxylic acid O-HOwater and water O-HOsulfonate hydrogen bonds at one end, and ammonium N-HOsulfonate and N-HOcarboxy hydrogen bonds at the other. The second association is centrosymmetric, with end linkages through water O-HOsulfonate hydrogen bonds. These conjoined units form stacks down c and are extended into a three-dimensional framework structure through N-HO and water O-HO hydrogen bonds to sulfonate O-atom acceptors. Anhydrous triammonium 3-carboxy-4-hydroxybenzenesulfonate 3-carboxylato-4-hydroxybenzenesulfonate, 3NH4+·C7H4O6S2-·C7H5O6S-, (II), is unusual, having both dianionic 5-SSA2- and monoanionic 5-SSA- species. These are linked by a carboxylic acid O-HO hydrogen bond and, together with the three ammonium cations (two on general sites and the third comprising two independent half-cations lying on crystallographic twofold rotation axes), give a pseudo-centrosymmetric asymmetric unit. Cation-anion hydrogen bonding within this layered unit involves a cyclic R33(8) association which, together with extensive peripheral N-HO hydrogen bonding involving both sulfonate and carboxy/carboxylate acceptors, gives a three-dimensional framework structure. This work further demonstrates the utility of the 5-SSA- monoanion for the generation of stable hydrogen-bonded crystalline materials, and provides the structure of a dianionic 5-SSA2- species of which there are only a few examples in the crystallographic literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated Li+/H+ exchange in the lithium ion conductors (LISICONS) [ Li2+2xZn1-xGeO4; x = 0.5 ( I) and x = 0.75 (II)] and their parent, gamma-Li2ZnGeO4. Facile exchange of approximately 2x lithium ions per formula unit occurs with both the LISICONS in dilute acetic acid, while the parent material does not exhibit an obvious Li+/H+ exchange under the same conditions. The results can be understood in terms of lithium ion distribution in the crystal structures: the parent Li2ZnGeO4, where all the lithium ions form part of the tetrahedral framework structure, does not exhibit a ready Li+/H+ exchange; LISICONS, where lithium ions are distributed between framework ( tetrahedral) and nonframework sites, undergo a facile Li+/H+ exchange of the nonframework site lithium ions. Accordingly, Li+/H+ exchange in dilute aqueous acetic acid provides a convenient probe to distinguish between the mobile and the immobile lithium ions in lithium ion conductors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A porous metalorganic framework, Mn(H3O)(Mn4Cl)(3)(hmtt)(8)] (POST-65), was prepared by the reaction of 5,5',10,10',15,15'-hexamethyltruxene-2,7,12-tricarboxylic acid (H(3)hmtt) with MnCl2 under solvothermal conditions. POST-65(Mn) was subjected to post-synthetic modification with Fe, Co, Ni, and Cu according to an ion-exchange method that resulted in the formation of three isomorphous frameworks, POST-65(Co/Ni/Cu), as well as a new framework, POST-65(Fe). The ion-exchanged samples could not be prepared by regular solvothermal reactions. The complete exchange of the metal ions and retention of the framework structure were verified by inductively coupled plasmaatomic emission spectrometry (ICP-AES), powder X-ray diffraction (PXRD), and BrunauerEmmettTeller (BET) surface-area analysis. Single-crystal X-ray diffractions studies revealed a single-crystal-to-single-crystal (SCSC)-transformation nature of the ion-exchange process. Hydrogen-sorption and magnetization measurements showed metal-specific properties of POST-65.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rechargeable batteries have propelled the wireless revolution and automobiles market over the past 25 years. Developing better batteries with improved energy density demands unveiling of new cathode ceramic materials with suitable diffusion channels and open framework structure. In this pursuit of achieving higher energy density, one approach is to realize enhanced redox voltage of insertion of ceramic compounds. This can be accomplished by incorporating highly electronegative anions in the cathode ceramics. Building on this idea, recently various sulphate- based compounds have been reported as high voltage cathode materials. The current article highlights the use of sulphate (SO4) based cathodes to realize the highest ever Fe3+/Fe2+ redox potentials in Li-ion batteries (LiFeSO4F fluorosulphate: 3.9V vs Li/Li+) and Na-ion batteries (Na2Fe2(SO4)(3) polysulphate: 3.8V vs Na/Na+). These sulphate-based cathode ceramic compounds pave way for newer avenues to design better batteries for future applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study of the synthesis of SAPO-34 molecular sieves, XRD, SEM, XRF, IR and NMR techniques were applied to monitor the crystalloid, structure and composition changes of the samples in the whole crystallization process in order to get evidence for the crystallization as well as Si incorporation mechanism of SATO-34. XRD results revealed that the crystallization contained two stages. In the first 2.5 h (the earlier stage), high up to similar to80% of relative crystallinity could be achieved and the crystal size of SAPO-34 was almost the same as that of any longer time, indicating a fast crystallization feature of the synthesis. In this stage, IR revealed that the formation of SAPO-34 framework structure was accompanied by the diminution of hydroxyls, suggesting that crystal nuclei of SAPO-34 may arise from the structure rearrangement of the initial gel and the condensation of the hydroxyls. NMR results reveal that the template and the ageing period are crucial for the later crystallization of SAPO-34. Preliminary structure units similar to the framework of SAPO-34 have already formed before the crystallization began (0 h and low temperature). Evidence from IR, NMR, and XRF shows that the formation of the SAPO-34 may be a type of gel conversion mechanism, the solution support and the appropriate solution circumstance are two important parameters of the crystallization of SAPO-34. Meanwhile, NMR measurements demonstrated that about 80% of total Si atoms directly take part in the formation of the crystal nuclei as well as in the growth of the crystal grains in the earlier stage (<2.5 h). Evidence tends to support that Si incorporation is by direct participation mechanism rather than by the Si substitution mechanism for P in this stage (<2.5 h). In the later stage (>2.5 h), the relative content of Si increased slightly with a little decrease of Al and P. The increase of Si(4Al) and the appearance of the Si(3Al), Si(2Al), Si(1Al) and Si(OAl) in this stage suggest that substitution of the Si atoms for the phosphorus and for the phosphorus and aluminum pair takes place in the crystallization. The relationship among structure, acidity and crystallization process is established, which suggests a possibility to improve the acidity and catalytic properties by choosing a optimum crystallization time, thus controlling the number and distribution of Si in the framework of SAPO-34. (C) 2002 Elsevier Science Inc. All rights reserved.