957 resultados para fractional predictor-corrector method
Resumo:
In this paper, Adams explicit and implicit formulas are obtained in a simple way and a relationship between them is established, allowing for their joint implementation as predictor-corrector methods. It is shown the purposefulness, from a didactic point of view, of Excel spreadsheets for calculations and for the orderly presentation of results in the application of Adams methods to solving initial value problems in ordinary differential equations.
Resumo:
对非线性系统提出了任意阶隐式指数时程差分多步法 ,实现了任意阶次指数时程差分预测 校正算法 .发展完善了指数时程差分法 .将新算法应用于非线性系统 ,取得了较好的效果 .数值结果表明隐式指数时程差分多步法很好地修正了显式指数时程差分多步法 ,隐式指数时程差分多步法是一种高精度、高效率的方法
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
El objetivo de esta Tesis es presentar un método eficiente para la evaluación de sistemas multi-cuerpo con elementos flexibles con pequeñas deformaciones, basado en métodos topológicos para la simulación de sistemas tan complejos como los que se utilizan en la práctica y en tiempo real o próximo al real. Se ha puesto un especial énfasis en la resolución eficiente de aquellos aspectos que conllevan mayor coste computacional, tales como la evaluación de las ecuaciones dinámicas y el cálculo de los términos de inercia. Las ecuaciones dinámicas se establecen en función de las variables independientes del sistema, y la integración de las mismas se realiza mediante formulaciones implícitas de index-3. Esta Tesis se articula en seis Capítulos. En el Capítulo 1 se realiza una revisión bibliográfica de la simulación de sistemas flexibles y los métodos más relevantes de integración de las ecuaciones diferenciales del movimiento. Asimismo, se presentan los objetivos de esta Tesis. En el Capítulo 2 se presenta un método semi-recursivo para la evaluación de las ecuaciones de los sistemas multi-cuerpo con elementos flexibles basado en formulaciones topológicas y síntesis modal. Esta Tesis determina la posición de cada punto del cuerpo flexible en función de un sistema de referencia flotante que se mueve con dicho cuerpo y de las amplitudes de ciertos modos de deformación calculados a partir de un mallado obtenido mediante el Método de Elementos Finitos. Se presta especial atención en las condiciones de contorno que se han de tener en cuenta a la hora de establecer las variables que definen la deformación del cuerpo flexible. El Capítulo 3 se centra en la evaluación de los términos de inercia de los sistemas flexibles que generalmente conllevan un alto coste computacional. Se presenta un método que permite el cálculo de dichos términos basado en el uso de 24 matrices constantes que pueden ser calculadas previamente al proceso de integración. Estas matrices permiten evaluar la matriz de masas y el vector de fuerzas de inercia dependientes de la velocidad sin que sea necesario evaluar la posición deformada de todos los puntos del cuerpo flexible. Se realiza un análisis pormenorizado de dichas matrices con el objetivo de optimizar su cálculo estableciendo aproximaciones que permitan reducir el número de dichos términos y optimizar aún más su evaluación. Se analizan dos posibles simplificaciones: la primera utiliza una discretización no-consistente basada en elementos finitos en los que se definen únicamente los desplazamientos axiales de los nodos; en la segunda propuesta se hace uso de una matriz de masas concentradas (Lumped Mass). Basándose en la formulación presentada, el Capítulo 4 aborda la integración eficiente de las ecuaciones dinámicas. Se presenta un método iterativo para la integración con fórmulas de index-3 basado en la proyección de las ecuaciones dinámicas según las variables independientes del sistema multi-cuerpo. El cálculo del residuo del sistema de ecuaciones no lineales que se ha de resolver de modo iterativo se realiza mediante un proceso recursivo muy eficiente que aprovecha la estructura topológica del sistema. Se analizan tres formas de evaluar la matriz tangente del citado sistema no lineal: evaluación aproximada, numérica y recursiva. El método de integración presentado permite el uso de distintas fórmulas. En esta Tesis se analizan la Regla Trapezoidal, la fórmula BDF de segundo orden y un método híbrido TR-BDF2. Para este último caso se presenta un algoritmo de paso variable. En el Capítulo 5 plantea la implementación del método propuesto en un programa general de simulación de mecanismos que permita la resolución de cualquier sistema multi-cuerpo definiéndolo mediante un fichero de datos. La implementación de este programa se ha realizado tanto en C++ como en Java. Se muestran los resultados de las formulaciones presentadas en esta Tesis mediante la simulación de cuatro ejemplos de distinta complejidad. Mediante análisis concretos se comparan la formulación presentada con otras existentes. También se analiza el efecto del lenguaje de programación utilizado en la implementación y los efectos de las posibles simplificaciones planteadas. Por último, el Capítulo 6 resume las principales conclusiones alcanzadas en la Tesis y las futuras líneas de investigación que con ella se abren. ABSTRACT This Thesis presents an efficient method for solving the forward dynamics of a multi-body sys-tem formed by rigid and flexible bodies with small strains for real-time simulation of real-life models. It is based on topological formulations. The presented work focuses on the efficient solution of the most time-consuming tasks of the simulation process, such as the numerical integration of the motion differential equations and in particular the evaluation of the inertia terms corresponding to the flexible bodies. The dynamic equations are formulated in terms of independent variables of the muti-body system, and they are integrated by means of implicit index-3 formulae. The Thesis is arranged in six chapters. Chapter 1 presents a review of the most relevant and recent contributions related to the modelization of flexible multi-body systems and the integration of the corresponding dynamic equations. The main objectives of the Thesis are also presented in detail. Chapter 2 presents a semi-recursive method for solving the equations of a multi-body system with flexible bodies based on topological formulations and modal synthesis. This Thesis uses the floating frame approach and the modal amplitudes to define the position of any point at the flexible body. These modal deformed shapes are obtained by means of the Finite Element Method. Particular attention has been taken to the boundary conditions used to define the deformation of the flexible bodies. Chapter 3 focuses on the evaluation of the inertia terms, which is usually a very time-consuming task. A new method based on the use of 24 constant matrices is presented. These matrices are evaluated during the set-up step, before the integration process. They allow the calculation of the inertia terms in terms of the position and orientation of the local coordinate system and the deformation variables, and there is no need to evaluate the position and velocities of all the nodes of the FEM mesh. A deep analysis of the inertia terms is performed in order to optimize the evaluation process, reducing both the terms used and the number of arithmetic operations. Two possible simplifications are presented: the first one uses a non-consistent approach in order to define the inertia terms respect to the Cartesian coordinates of the FEM mesh, rejecting those corresponding to the angular rotations; the second approach makes use of lumped mass matrices. Based on the previously presented formulation, Chapter 4 is focused on the numerical integration of the motion differential equations. A new predictor-corrector method based on index-3 formulae and on the use of multi-body independent variables is presented. The evaluation of the dynamic equations in a new time step needs the solution of a set on nonlinear equations by a Newton-Raphson iterative process. The computation of the corresponding residual vector is performed efficiently by taking advantage of the system’s topological structure. Three methods to compute the tangent matrix are presented: an approximated evaluation that considers only the most relevant terms, a numerical approach based on finite differences and a recursive method that uses the topological structure. The method presented for integrating the dynamic equations can use a variety of integration formulae. This Thesis analyses the use of the trapezoidal rule, the 2nd order BDF formula and the hybrid TR-BDF2 method. A variable-time step strategy is presented for the last one. Chapter 5 describes the implementation of the proposed method in a general purpose pro-gram for solving any multibody defined by a data file. This program is implemented both in C++ and Java. Four examples are used to check the validity of the formulation and to compare this method with other methods commonly used to solve the dynamic equations of multi-body systems containing flexible bodies. The efficiency of the programming methodology used and the effect of the possible simplifications proposed are also analyzed. Chapter 6 summarizes the main Conclusions obtained in this Thesis and the new lines of research that have been opened.
Resumo:
Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equations with a nonlinear source term (TSFFPE-NST), which involve the Caputo time fractional derivative (CTFD) of order α ∈ (0, 1) and the symmetric Riesz space fractional derivative (RSFD) of order μ ∈ (1, 2). Approximating the CTFD and RSFD using the L1-algorithm and shifted Grunwald method, respectively, a computationally effective numerical method is presented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method are investigated. Finally, numerical experiments are carried out to support the theoretical claims.
Resumo:
The space and time fractional Bloch–Torrey equation (ST-FBTE) has been used to study anomalous diffusion in the human brain. Numerical methods for solving ST-FBTE in three-dimensions are computationally demanding. In this paper, we propose a computationally effective fractional alternating direction method (FADM) to overcome this problem. We consider ST-FBTE on a finite domain where the time and space derivatives are replaced by the Caputo–Djrbashian and the sequential Riesz fractional derivatives, respectively. The stability and convergence properties of the FADM are discussed. Finally, some numerical results for ST-FBTE are given to confirm our theoretical findings.
Resumo:
In this paper, we consider a two-sided space-fractional diffusion equation with variable coefficients on a finite domain. Firstly, based on the nodal basis functions, we present a new fractional finite volume method for the two-sided space-fractional diffusion equation and derive the implicit scheme and solve it in matrix form. Secondly, we prove the stability and convergence of the implicit fractional finite volume method and conclude that the method is unconditionally stable and convergent. Finally, some numerical examples are given to show the effectiveness of the new numerical method, and the results are in excellent agreement with theoretical analysis.
Resumo:
In this paper a new parallel algorithm for nonlinear transient dynamic analysis of large structures has been presented. An unconditionally stable Newmark-beta method (constant average acceleration technique) has been employed for time integration. The proposed parallel algorithm has been devised within the broad framework of domain decomposition techniques. However, unlike most of the existing parallel algorithms (devised for structural dynamic applications) which are basically derived using nonoverlapped domains, the proposed algorithm uses overlapped domains. The parallel overlapped domain decomposition algorithm proposed in this paper has been formulated by splitting the mass, damping and stiffness matrices arises out of finite element discretisation of a given structure. A predictor-corrector scheme has been formulated for iteratively improving the solution in each step. A computer program based on the proposed algorithm has been developed and implemented with message passing interface as software development environment. PARAM-10000 MIMD parallel computer has been used to evaluate the performances. Numerical experiments have been conducted to validate as well as to evaluate the performance of the proposed parallel algorithm. Comparisons have been made with the conventional nonoverlapped domain decomposition algorithms. Numerical studies indicate that the proposed algorithm is superior in performance to the conventional domain decomposition algorithms. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The arc-length method has become a widely established solution technique for studying nonlinear structural behavior. By augmenting the set of nonlinear equilibrium equations with a constraint equation, which is a function of both the displacements and load increment, it is capable of traversing limit points. Numerous investigations have shown that highly nonlinear behavior such as sharp "snap-backs" can still lead to numerical difficulties. Two practical examples are presented to assess the effectiveness of this solution technique in capturing secondary instabilities in postbuckling structures, which present themselves as abrupt mode jumps. Although the first example poses no special difficulties, in the second case the nonlinear procedure fails to converge. An improvement to the method's formulation is suggested, which accounts for the residual forces that are usually neglected, when proceeding to the next increment once convergence is reached on the current increment. The choice of a correct load increment at the first iteration, within a predictor-corrector scheme, is central to the method's effectiveness. Current strategies for a choice of this load increment are discussed and are shown to be no longer consistent with the modified formulation; therefore, a new approach is proposed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We propose a positive, accurate moment closure for linear kinetic transport equations based on a filtered spherical harmonic (FP_N) expansion in the angular variable. The FP_N moment equations are accurate approximations to linear kinetic equations, but they are known to suffer from the occurrence of unphysical, negative particle concentrations. The new positive filtered P_N (FP_N+) closure is developed to address this issue. The FP_N+ closure approximates the kinetic distribution by a spherical harmonic expansion that is non-negative on a finite, predetermined set of quadrature points. With an appropriate numerical PDE solver, the FP_N+ closure generates particle concentrations that are guaranteed to be non-negative. Under an additional, mild regularity assumption, we prove that as the moment order tends to infinity, the FP_N+ approximation converges, in the L2 sense, at the same rate as the FP_N approximation; numerical tests suggest that this assumption may not be necessary. By numerical experiments on the challenging line source benchmark problem, we confirm that the FP_N+ method indeed produces accurate and non-negative solutions. To apply the FP_N+ closure on problems at large temporal-spatial scales, we develop a positive asymptotic preserving (AP) numerical PDE solver. We prove that the propose AP scheme maintains stability and accuracy with standard mesh sizes at large temporal-spatial scales, while, for generic numerical schemes, excessive refinements on temporal-spatial meshes are required. We also show that the proposed scheme preserves positivity of the particle concentration, under some time step restriction. Numerical results confirm that the proposed AP scheme is capable for solving linear transport equations at large temporal-spatial scales, for which a generic scheme could fail. Constrained optimization problems are involved in the formulation of the FP_N+ closure to enforce non-negativity of the FP_N+ approximation on the set of quadrature points. These optimization problems can be written as strictly convex quadratic programs (CQPs) with a large number of inequality constraints. To efficiently solve the CQPs, we propose a constraint-reduced variant of a Mehrotra-predictor-corrector algorithm, with a novel constraint selection rule. We prove that, under appropriate assumptions, the proposed optimization algorithm converges globally to the solution at a locally q-quadratic rate. We test the algorithm on randomly generated problems, and the numerical results indicate that the combination of the proposed algorithm and the constraint selection rule outperforms other compared constraint-reduced algorithms, especially for problems with many more inequality constraints than variables.