1000 resultados para forecast modelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This master thesis presents a study on the requisite cooling of an activated sludge process in paper and pulp industry. The energy consumption of paper and pulp industry and it’s wastewater treatment plant in particular is relatively high. It is therefore useful to understand the wastewater treatment process of such industries. The activated sludge process is a biological mechanism which degrades carbonaceous compounds that are present in waste. The modified activated sludge model constructed here aims to imitate the bio-kinetics of an activated sludge process. However, due to the complicated non-linear behavior of the biological process, modelling this system is laborious and intriguing. We attempt to find a system solution first using steady-state modelling of Activated Sludge Model number 1 (ASM1), approached by Euler’s method and an ordinary differential equation solver. Furthermore, an enthalpy study of paper and pulp industry’s vital pollutants was carried out and applied to revise the temperature shift over a period of time to formulate the operation of cooling water. This finding will lead to a forecast of the plant process execution in a cost-effective manner and management of effluent efficiency. The final stage of the thesis was achieved by optimizing the steady state of ASM1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unsaturated zone exerts a major control on the delivery of nutrients to Chalk streams, yet flow and transport processes in this complex, dual-porosity medium have remained controversial. A major challenge arises in characterising these processes, both at the detailed mechanistic level and at an appropriate level for inclusion within catchment-scale models for nutrient management. The lowland catchment research (LOCAR) programme in the UK has provided a unique set of comprehensively instrumented groundwater-dominated catchments. Of these, the Pang and Lambourn, tributaries of the Thames near Reading, have been a particular focus for research into subsurface processes and surface water-groundwater interactions. Data from LOCAR and other sources, along with a new dual permeability numerical model of the Chalk, have been used to explore the relative roles of matrix and fracture flow within the unsaturated zone and resolve conflicting hypotheses of response. From the improved understanding gained through these explorations, a parsimonious conceptualisation of the general response of flow and transport within the Chalk unsaturated zone was formulated. This paper summarises the modelling and data findings of these explorations, and describes the integration of the new simplified unsaturated zone representation with a catchment-scale model of nutrients (INCA), resulting in a new model for catchment-scale flow and transport within Chalk systems: INCA-Chalk. This model is applied to the Lambourn, and results, including hindcast and forecast simulations, are presented. These clearly illustrate the decadal time-scales that need to be considered in the context of nutrient management and the EU Water Framework Directive. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal time scales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Niño—Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Absent aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting current and future behaviour of monsoons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several previous studies have attempted to assess the sublimation depth-scales of ice particles from clouds into clear air. Upon examining the sublimation depth-scales in the Met Office Unified Model (MetUM), it was found that the MetUM has evaporation depth-scales 2–3 times larger than radar observations. Similar results can be seen in the European Centre for Medium-Range Weather Forecasts (ECMWF), Regional Atmospheric Climate Model (RACMO) and Météo-France models. In this study, we use radar simulation (converting model variables into radar observations) and one-dimensional explicit microphysics numerical modelling to test and diagnose the cause of the deep sublimation depth-scales in the forecast model. The MetUM data and parametrization scheme are used to predict terminal velocity, which can be compared with the observed Doppler velocity. This can then be used to test the hypothesis as to why the sublimation depth-scale is too large within the MetUM. Turbulence could lead to dry air entrainment and higher evaporation rates; particle density may be wrong, particle capacitance may be too high and lead to incorrect evaporation rates or the humidity within the sublimating layer may be incorrectly represented. We show that the most likely cause of deep sublimation zones is an incorrect representation of model humidity in the layer. This is tested further by using a one-dimensional explicit microphysics model, which tests the sensitivity of ice sublimation to key atmospheric variables and is capable of including sonde and radar measurements to simulate real cases. Results suggest that the MetUM grid resolution at ice cloud altitudes is not sufficient enough to maintain the sharp drop in humidity that is observed in the sublimation zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data assimilation is predominantly used for state estimation; combining observational data with model predictions to produce an updated model state that most accurately approximates the true system state whilst keeping the model parameters fixed. This updated model state is then used to initiate the next model forecast. Even with perfect initial data, inaccurate model parameters will lead to the growth of prediction errors. To generate reliable forecasts we need good estimates of both the current system state and the model parameters. This paper presents research into data assimilation methods for morphodynamic model state and parameter estimation. First, we focus on state estimation and describe implementation of a three dimensional variational(3D-Var) data assimilation scheme in a simple 2D morphodynamic model of Morecambe Bay, UK. The assimilation of observations of bathymetry derived from SAR satellite imagery and a ship-borne survey is shown to significantly improve the predictive capability of the model over a 2 year run. Here, the model parameters are set by manual calibration; this is laborious and is found to produce different parameter values depending on the type and coverage of the validation dataset. The second part of this paper considers the problem of model parameter estimation in more detail. We explain how, by employing the technique of state augmentation, it is possible to use data assimilation to estimate uncertain model parameters concurrently with the model state. This approach removes inefficiencies associated with manual calibration and enables more effective use of observational data. We outline the development of a novel hybrid sequential 3D-Var data assimilation algorithm for joint state-parameter estimation and demonstrate its efficacy using an idealised 1D sediment transport model. The results of this study are extremely positive and suggest that there is great potential for the use of data assimilation-based state-parameter estimation in coastal morphodynamic modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological path-ways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the end of the 20th century, we can look back on a spectacular development of numerical weather prediction, which has, practically uninterrupted, been going on since the middle of the century. High-resolution predictions for more than a week ahead for any part of the globe are now routinely produced and anyone with an Internet connection can access many of these forecasts for anywhere in the world. Extended predictions for several seasons ahead are also being done — the latest El Niño event in 1997/1998 is an example of such a successful prediction. The great achievement is due to a number of factors including the progress in computational technology and the establishment of global observing systems, combined with a systematic research program with an overall strategy towards building comprehensive prediction systems for climate and weather. In this article, I will discuss the different evolutionary steps in this development and the way new scientific ideas have contributed to efficiently explore the computing power and in using observations from new types of observing systems. Weather prediction is not an exact science due to unavoidable errors in initial data and in the models. To quantify the reliability of a forecast is therefore essential and probably more so the longer the forecasts are. Ensemble prediction is thus a new and important concept in weather and climate prediction, which I believe will become a routine aspect of weather prediction in the future. The limit between weather and climate prediction is becoming more and more diffuse and in the final part of this article I will outline the way I think development may proceed in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite-based Synthetic Aperture Radar (SAR) has proved useful for obtaining information on flood extent, which, when intersected with a Digital Elevation Model (DEM) of the floodplain, provides water level observations that can be assimilated into a hydrodynamic model to decrease forecast uncertainty. With an increasing number of operational satellites with SAR capability, information on the relationship between satellite first visit and revisit times and forecast performance is required to optimise the operational scheduling of satellite imagery. By using an Ensemble Transform Kalman Filter (ETKF) and a synthetic analysis with the 2D hydrodynamic model LISFLOOD-FP based on a real flooding case affecting an urban area (summer 2007,Tewkesbury, Southwest UK), we evaluate the sensitivity of the forecast performance to visit parameters. We emulate a generic hydrologic-hydrodynamic modelling cascade by imposing a bias and spatiotemporal correlations to the inflow error ensemble into the hydrodynamic domain. First, in agreement with previous research, estimation and correction for this bias leads to a clear improvement in keeping the forecast on track. Second, imagery obtained early in the flood is shown to have a large influence on forecast statistics. Revisit interval is most influential for early observations. The results are promising for the future of remote sensing-based water level observations for real-time flood forecasting in complex scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ghana faces a macroeconomic problem of inflation for a long period of time. The problem in somehow slows the economic growth in this country. As we all know, inflation is one of the major economic challenges facing most countries in the world especially those in African including Ghana. Therefore, forecasting inflation rates in Ghana becomes very important for its government to design economic strategies or effective monetary policies to combat any unexpected high inflation in this country. This paper studies seasonal autoregressive integrated moving average model to forecast inflation rates in Ghana. Using monthly inflation data from July 1991 to December 2009, we find that ARIMA (1,1,1)(0,0,1)12 can represent the data behavior of inflation rate in Ghana well. Based on the selected model, we forecast seven (7) months inflation rates of Ghana outside the sample period (i.e. from January 2010 to July 2010). The observed inflation rate from January to April which was published by Ghana Statistical Service Department fall within the 95% confidence interval obtained from the designed model. The forecasted results show a decreasing pattern and a turning point of Ghana inflation in the month of July.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate rainfall data are the key input parameter for modelling river discharge and soil loss. Remote areas of Ethiopia often lack adequate precipitation data and where these data are available, there might be substantial temporal or spatial gaps. To counter this challenge, the Climate Forecast System Reanalysis (CFSR) of the National Centers for Environmental Prediction (NCEP) readily provides weather data for any geographic location on earth between 1979 and 2014. This study assesses the applicability of CFSR weather data to three watersheds in the Blue Nile Basin in Ethiopia. To this end, the Soil and Water Assessment Tool (SWAT) was set up to simulate discharge and soil loss, using CFSR and conventional weather data, in three small-scale watersheds ranging from 112 to 477 ha. Calibrated simulation results were compared to observed river discharge and observed soil loss over a period of 32 years. The conventional weather data resulted in very good discharge outputs for all three watersheds, while the CFSR weather data resulted in unsatisfactory discharge outputs for all of the three gauging stations. Soil loss simulation with conventional weather inputs yielded satisfactory outputs for two of three watersheds, while the CFSR weather input resulted in three unsatisfactory results. Overall, the simulations with the conventional data resulted in far better results for discharge and soil loss than simulations with CFSR data. The simulations with CFSR data were unable to adequately represent the specific regional climate for the three watersheds, performing even worse in climatic areas with two rainy seasons. Hence, CFSR data should not be used lightly in remote areas with no conventional weather data where no prior analysis is possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the key scrutiny issues of new coming energy era would be the environmental impact of fusion facilities managing one kg of tritium. The potential change of committed dose regulatory limits together with the implementation of nuclear design principles (As Low as Reasonably achievable - ALARA -, Defense in Depth -D-i-D-) for fusion facilities could strongly impact on the cost of deployment of coming fusion technology. Accurate modeling of environmental tritium transport forms (HT, HTO) for the assessment of fusion facility dosimetric impact in Accidental case appears as of major interest. This paper considers different short-term releases of tritium forms (HT and HTO) to the atmosphere from a potential fusion reactor located in the Mediterranean Basin. This work models in detail the dispersion of tritium forms and dosimetric impact of selected environmental patterns both inland and in-sea using real topography and forecast meteorological data-fields (ECMWF/FLEXPART). We explore specific values of this ratio in different levels and we examine the influence of meteorological conditions in the HTO behavior for 24 hours. For this purpose we have used a tool which consists on a coupled Lagrangian ECMWF/FLEXPART model useful to follow real time releases of tritium at 10, 30 and 60 meters together with hourly observations of wind (and in some cases precipitations) to provide a short-range approximation of tritium cloud behavior. We have assessed inhalation doses. And also HTO/HT ratios in a representative set of cases during winter 2010 and spring 2011 for the 3 air levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current uncertain context that affects both the world economy and the energy sector, with the rapid increase in the prices of oil and gas and the very unstable political situation that affects some of the largest raw materials’ producers, there is a need for developing efficient and powerful quantitative tools that allow to model and forecast fossil fuel prices, CO2 emission allowances prices as well as electricity prices. This will improve decision making for all the agents involved in energy issues. Although there are papers focused on modelling fossil fuel prices, CO2 prices and electricity prices, the literature is scarce on attempts to consider all of them together. This paper focuses on both building a multivariate model for the aforementioned prices and comparing its results with those of univariate ones, in terms of prediction accuracy (univariate and multivariate models are compared for a large span of days, all in the first 4 months in 2011) as well as extracting common features in the volatilities of the prices of all these relevant magnitudes. The common features in volatility are extracted by means of a conditionally heteroskedastic dynamic factor model which allows to solve the curse of dimensionality problem that commonly arises when estimating multivariate GARCH models. Additionally, the common volatility factors obtained are useful for improving the forecasting intervals and have a nice economical interpretation. Besides, the results obtained and methodology proposed can be useful as a starting point for risk management or portfolio optimization under uncertainty in the current context of energy markets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Debris avalanches are complex phenomena due to the variety of mechanisms that control the failure stage and the avalanche formation. Regarding these issues, in the literature, either field evidence or qualitative interpretations can be found while few experimental laboratory tests and rare examples of geomechanical modelling are available for technical and/or scientific purposes. As a contribution to the topic, the paper firstly highlights as the problem can be analysed referring to a unique mathematical framework from which different modelling approaches can be derived based on limit equilibrium method (LEM), finite element method (FEM), or smooth particle hydrodynamics (SPH). Potentialities and limitations of these approaches are then tested for a large study area where huge debris avalanches affected shallow deposits of pyroclastic soils (Sarno-Quindici, Southern Italy). The numerical results show that LEM as well as uncoupled and coupled stress–strain FEM analyses are able to individuate the major triggering mechanisms. On the other hand, coupled SPH analyses outline the relevance of erosion phenomena, which can modify the kinematic features of debris avalanches in their source areas, i.e. velocity, propagation patterns and later spreading of the unstable mass. As a whole, the obtained results encourage the application of the introduced approaches to further analyse real cases in order to enhance the current capability to forecast the inception of these dangerous phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last decade, scientific studies have indicated an association between air pollution to which people are exposed and wide range of adverse health outcomes. We have developed a tool which is based on a model (MM5-CMAQ) running over Europe with 50 km spatial resolution, based on EMEP annual emissions, to produce a short-term forecast of the impact on health. In order to estimate the mortality change (forecasted for the next 24 hours) we have chosen a log-linear (Poisson) regression form to estimate the concentration-response function. The parameters involved in the C-R function have been estimated based on epidemiological studies, which have been published. Finally, we have derived the relationship between concentration change and mortality change from the C-R function which is the final health impact function.