998 resultados para focal cerebral-ischemia
Resumo:
The only treatment of patients with acute ischemic stroke is thrombolytic therapy, which benefits only a fraction of stroke patients. Both human and experimental studies indicate that ischemic stroke involves secondary inflammation that significantly contributes to the outcome after ischemic insult. Minocycline is a semisynthetic second-generation tetracycline that exerts antiinflammatory effects that are completely separate from its antimicrobial action. Because tetracycline treatment is clinically well tolerated, we investigated whether minocycline protects against focal brain ischemia with a wide therapeutic window. Using a rat model of transient middle cerebral artery occlusion, we show that daily treatment with minocycline reduces cortical infarction volume by 76 ± 22% when the treatment is started 12 h before ischemia and by 63 ± 35% when started even 4 h after the onset of ischemia. The treatment inhibits morphological activation of microglia in the area adjacent to the infarction, inhibits induction of IL-1β-converting enzyme, and reduces cyclooxygenase-2 expression and prostaglandin E2 production. Minocycline had no effect on astrogliosis or spreading depression, a wave of ionic transients thought to contribute to enlargement of cortical infarction. Treatment with minocycline may act directly on brain cells, because cultured primary neurons were also salvaged from glutamate toxicity. Minocycline may represent a prototype of an antiinflammatory compound that provides protection against ischemic stroke and has a clinically relevant therapeutic window.
Resumo:
Because neurogenesis persists in the adult mammalian brain and can be regulated by physiological and pathological events, we investigated its possible involvement in the brain's response to focal cerebral ischemia. Ischemia was induced by occlusion of the middle cerebral artery in the rat for 90 min, and proliferating cells were labeled with 5-bromo-2′-deoxyuridine-5′-monophosphate (BrdUrd) over 2-day periods before sacrificing animals 1, 2 or 3 weeks after ischemia. Ischemia increased the incorporation of BrdUrd into cells in two neuroproliferative regions—the subgranular zone of the dentate gyrus and the rostral subventricular zone. Both effects were bilateral, but that in the subgranular zone was more prominent on the ischemic side. Cells labeled with BrdUrd coexpressed the immature neuronal markers doublecortin and proliferating cell nuclear antigen but did not express the more mature cell markers NeuN and Hu, suggesting that they were nascent neurons. These results support a role for ischemia-induced neurogenesis in what may be adaptive processes that contribute to recovery after stroke.
Resumo:
Der ischämische Schlaganfall ist nicht nur die zweithäufigste Todesursache weltweit, sondern auch eine der Hauptursachen für körperliche Beeinträchtigungen im Erwachsenenalter. Das Ausmaß der durch den Schlaganfall hervorgerufenen Gewebeschädigung ist stark durch das Immunsystem geprägt. Die im Zentralnervensystem (ZNS) ansässigen Mikroglia und die aus dem Blutsystem infiltrierenden Makrophagen sind die Schlüsselzellen der lokalen und systemischen Entzündungsantwort nach dem ischämischen Schlaganfall. Sowohl Mikroglia als auch Makrophagen spielen in der Entwicklung der Gewebeschädigung eine duale Rolle. Zum einen phagozytieren sie Zelltrümmer und unterstützen neuroregenerative Prozesse, zum anderen sind diese Zellen in der Lage den Zustand der Gewebsschädigung zu verschlimmern und einer Regeneration des ZNS entgegenzuwirken. Die Polarisierung der Mikroglia/Makrophagen hin zu verschiedenen Phänotypen ist abhängig von der jeweiligen Phase der Gewebeschädigung. Der destruktive, proinflammatorische Phänotyp (M1) steht dabei dem protektiven, antiinflammatorischen Phänotyp (M2) gegenüber. Die Notwendigkeit einer zielgerichteten Regulierung der polarisierten Mikroglia/Makrophagen zum protektiven M2-Phänotyp wurde bereits mehrfach im Zusammenhang mit der Behandlung von neurodegenerativen Erkrankungen erwähnt. In der vorliegenden Dissertation soll die immunregulierende und neuroprotektive Wirkung der microRibonukleinsäure-124 (miRNA-124) in Bezug auf die Polarisierung von Mikroglia/Makrophagen zu verschiedenen Zeitpunkten nach Verschluss der Arteria cerebri media (ACM) im Gehirn von Mäusen gezeigt werden. Zu diesem Zweck wurde die liposomierte miRNA-124 zu einem frühen Zeitpunkt (Tag 2) und zu einem späten Zeitpunkt (Tag 10) nach Verschluss der ACM verabreicht. Die Behandlung mit der miRNA-124 zu einem frühen Zeitpunkt resultierte dabei in einem signifikanten Anstieg in der Anzahl der M2-positiven Mikroglia/Makrophagen im Vergleich zur Kontrollgruppe. Gleichzeitig nahm die Anzahl der M1-positiven Mikroglia/Makrophagen signifikant ab. Im Wesentlichen resultierte die Behandlung mit der miRNA-124 zu beiden Zeitpunkten in einem geringeren Verhältnis von proinflammatorischen (M1) zu antiinflammatorischen (M2) Mikroglia/Makrophagen. Zu den weiteren Erkenntnissen einer frühzeitigen Behandlung im Rahmen dieser Dissertation gehören: (i) eine signifikante Zunahme des neuronalen Überlebens, das zudem positiv mit der Anzahl der M2-positiven Mikroglia/Makrophagen korreliert, (ii) eine verbesserte funktionelle Erholung, welche in Verbindung mit den veränderten neuroinflammatorischen Ereignissen steht und (iii) ein signifikant verkleinertes Läsionsareal, welches durch reaktive Astrozyten zum gesunden Gewebe hin abgegrenzt wird. Die Ergebnisse dieser Dissertation zeigen, dass die Verabreichung von miRNA-124 eine neue Möglichkeit zur Regulierung der Immunantwort und der Neuroprotektion im Rahmen der Behandlung des ischämischen Schlaganfalls darstellt.
Resumo:
OBJECTIVE: To evaluate the contributions of autophagic, necrotic, and apoptotic cell death mechanisms after neonatal cerebral ischemia and hence define the most appropriate neuroprotective approach for postischemic therapy. METHODS: Rats were exposed to transient focal cerebral ischemia on postnatal day 12. Some rats were treated by postischemic administration of pan-caspase or autophagy inhibitors. The ischemic brain tissue was studied histologically, biochemically, and ultrastructurally for autophagic, apoptotic, and necrotic markers. RESULTS: Lysosomal and autophagic activities were increased in neurons in the ischemic area from 6 to 24 hours postinjury, as shown by immunohistochemistry against lysosomal-associated membrane protein 1 and cathepsin D, by acid phosphatase histochemistry, by increased expression of autophagosome-specific LC3-II and by punctate LC3 staining. Electron microscopy confirmed the presence of large autolysosomes and putative autophagosomes in neurons. The increases in lysosomal activity and autophagosome formation together demonstrate increased autophagy, which occurred mainly in the border of the lesion, suggesting its involvement in delayed cell death. We also provide evidence for necrosis near the center of the lesion and apoptotic-like cell death in its border, but in nonautophagic cells. Postischemic intracerebroventricular injections of autophagy inhibitor 3-methyladenine strongly reduced the lesion volume (by 46%) even when given >4 hours after the beginning of the ischemia, whereas pan-caspase inhibitors, carbobenzoxy-valyl-alanyl-aspartyl(OMe)-fluoromethylketone and quinoline-val-asp(OMe)-Ch2-O-phenoxy, provided no protection. INTERPRETATION: The prominence of autophagic neuronal death in the ischemic penumbra and the neuroprotective efficacy of postischemic autophagy inhibition indicate that autophagy should be a primary target in the treatment of neonatal cerebral ischemia.
Resumo:
Sleep-wake disturbances are frequently observed in stroke patients and are associated with poorer functional outcome. Until now the effects of sleep on stroke evolution are unknown. The purpose of the present study was to evaluate the effects of three sleep deprivation (SD) protocols on brain damages after focal cerebral ischemia in a rat model. Permanent occlusion of distal branches of the middle cerebral artery was induced in adult rats. The animals were then subjected to 6h SD, 12h SD or sleep disturbances (SDis) in which 3 x 12h sleep deprivation were performed by gentle handling. Infarct size and brain swelling were assessed by Cresyl violet staining, and the number of damaged cells was measured by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Behavioral tests, namely tape removal and cylinder tests, were performed for assessing sensorimotor function. In the 6h SD protocol, no significant difference (P > 0.05) was found either in infarct size (42.5 ± 30.4 mm3 in sleep deprived animals vs. 44.5 ± 20.5 mm3 in controls, mean ± s.d.), in brain swelling (10.2 ± 3.8 % in sleep deprived animals vs. 11.3 ± 2.0 % in controls) or in number of TUNEL-positive cells (21.7 ± 2.0/mm2 in sleep deprived animals vs. 23.0 ± 1.1/mm2 in controls). In contrast, 12h sleep deprivation increased infarct size by 40 % (82.8 ± 10.9 mm3 in SD group vs. 59.2 ± 13.9 mm3 in control group, P = 0.008) and number of TUNEL-positive cells by 137 % (46.8 ± 15/mm in SD group vs. 19.7 ± 7.7/mm2 in control group, P = 0.003). There was no significant difference (P > 0.05) in brain swelling (12.9 ± 6.3 % in sleep deprived animals vs. 11.6 ± 6.0 % in controls). The SDis protocol also increased infarct size by 76 % (3 x 12h SD 58.8 ± 20.4 mm3 vs. no SD 33.8 ± 6.3 mm3, P = 0.017) and number of TUNEL-positive cells by 219 % (32.9 ± 13.2/mm2 vs. 10.3 ± 2.5/mm2, P = 0.008). Brain swelling did not show any difference between the two groups (24.5 ± 8.4 % in SD group vs. 16.7 ± 8.9 % in control group, p > 0.05). Both behavioral tests did not show any concluding results. In summary, we demonstrate that sleep deprivation aggravates brain damages in a rat model of stroke. Further experiments are needed to unveil the mechanisms underlying these effects.
Resumo:
Abstract : Neonatal stroke occurs in 1 out of 4000 live births and usually leads to serious motor and cognitive disabilities. Ischemic brain injury results from a complex of pathophysiological events that evolve over space and time making it difficult to devise successful therapy. To date, there are no effective treatments for perinatal brain damage. Most clinical trials of neuroprotectaot drugs have failed because of their side-effects. For this reason it is important to find ways to target drugs specifically into the stressed cells. In this study we plan to contribute to the development of an efficient neuroprotective strategy against excitotoxic cell death in the neonate. In order to achieve this goal, several strategies were followed. A recently described phenomenon of induced endocytosis associated with excitotoxicity was more deeply investigated. As a simplified model we used dissociated cortical neurons exposed to an excitotoxic dose of NMDA, and we showed that this phenomenon depends on clathrin and dynamin. Using a model of neonatal focal cerebral ischemia, we demonstrated that the excitotoxicity-related endocytosis targets molecules such as TAT peptides into stressed neurons. These appear to be viable, raising the possibility of using this phenomenon as a doorway for neuroprotection. One part of the project was devoted to the study of the TAT-conjugated JNK inhibitory peptide, D-JNKI1. Adose-response study showed strong neuroprotection over a wide dose-range in the case of delayed administration (either intravenous or intraperitoneal). Since D-JNKI1 is aTAT-linked peptide, we investigated the role of its own NMDA-induced endocytosis in its neuroprotective efficacy. Furthermore, we showed that this endocytosis is JNK dependent, and that D-JNKI1 regulates its own uptake. We additionally studied the different types of cell death involved in a model of neonatal focal cerebral ischemia. Necrosis occurred rapidly in the center of the lesion whereas apoptosis and autophagic cell death occurred late at the lesion border. Inhibiting apoptosis was not protective, but use of autophagy inhibitor 3methyladenine provided a strong neuroprotection. Finally, combining two neuroprotectants that target different intracellular pathways was neuroprotective in a severe model of cerebral ischemia where neither of the drugs was efficient when administered individually. Résumé : L'ischémie néonatale connaît une incidence de 1 naissance sur 4000, entraînant généralement de sérieux dysfonctionnements moteurs et cognitifs. L'ischémie cérébrale résulte d'évènements physiopathologiques complexes qui évoluent dans l'espace et le temps rendant difficile la conception de thérapies efficaces. A l'heure actuelle, aucun traitement n'existe pour lutter contre les accidents vasculaires cérébraux qui se produisent autour de la naissance. La plupart des essais cliniques concernant des molécules neuroprotectrices ont échoué du fait de leurs effets secondaires néfastes. Pour cette raison, il est important de trouver des moyens de cibler les drogues dans les cellules stressées spécifiquement. Dans cette étude nous visons à participer au développement d'une stratégie neuroprotectrice efficace contre l'ischémie cérébrale chez le nouveau-né. Dans ce but, plusieurs stratégies ont été poursuivies. Un nouveau phénomène d'endocytose induite par un stimulus excitotoxique a été récemment décrit. Une partie de cette étude va consister à mieux comprendre ce phénomène. Pour céla, nous avons utilisé comme modèle d'étude simplifié des cultures dissociées de neurones corticaux exposées à une dose excitotoxique de NMDA. Nous avons ainsi montré que cette endocytose associée à l'excitotoxicité dépend de la clathrine et de la dynamine. A l'aide d'un modèle d'ischémie cérébrale focale chez le raton de 12 jours, nous avons démontré que cette endocytose induite par l'excitotoxicité permet de cibler des molécules diverses et en particulier les peptides TAT dans les neurones stressés. Ces neurones fortement endocytiques apparaissent comme étant encore viables, ouvrant la possibilité d'utiliser cette endocytose comme moyen d'entrée pour des molécules thérapeutiques. Une partie du projet a été consacrée à l'étude d'un inhibiteur de la voie JNK, couplé au TAT, appelé D-JNKI1. Des études de dose réponse du D-JNKI1 ont été réalisées chez l'animal, testant les effets d'une administration retardée en injection intraveineuse ou intra péritonéale. Ces études démontrent qu'une large gamme de dose permet d'obCenir une réduction de la taille de la lésion. Comme D-JNK11 est couplé au peptide TAT, nous avons étudié la contribution que sa propre endocytose lors de l'excitotoxicité apporte à ses effets protecteurs. Par ailleurs, nous avons montré que cette endocytose induite par l'excitotoxicité dépend de la voie de signalisation JNK et que D-JNK11 est donc capable de réguler sa propre entrée. Nous avons en parallèle étudié les différents types de mort cellulaires impliqués dans le développement de la lésion dans un modèle sévère d'ischémie cérébrale chez le raton nouveau-né. La mort cellulaire par nécrose se développe rapidement dans le centre de la lésion alors que les morts cellulaires par apoptose et autophagique vont apparaître plus tard et au bord de la lésion. Inhiber l'apoptose n'a pas permis de réduire la taille de la lésion alors que l'utilisation d'un inhibiteur d'autophagie, la 3-méthyladénine, procure une forte neuroprotection. Finalement, la combinaison de deux peptides qui ciblent différentes voies de signalisation intracellulaire permet d'obtenir une bonne protection dans le modèle d'ischémie sévère dans lequel aucun des deux peptides administré séparément n'a donné d'effets bénéfiques.
Resumo:
OBJECTIVE: Targeting neuroprotectants specifically to the cells that need them is a major goal in biomedical research. Many peptidic protectants contain an active sequence linked to a carrier such as the transactivator of transcription (TAT) transduction sequence, and here we test the hypothesis that TAT-linked peptides are selectively endocytosed into neurons stressed by excitotoxicity and focal cerebral ischemia. METHODS: In vivo experiments involved intracerebroventricular injection of TAT peptides or conventional tracers (peroxidase, fluorescein isothiocyanate-dextran) in young rats exposed to occlusion of the middle cerebral artery at postnatal day 12. Cellular mechanisms of uptake were analyzed in dissociated cortical neuronal cultures. RESULTS: In both models, all tracers were taken up selectively into stressed neurons by endocytosis. In the in vivo model, this was neuron specific and limited to the ischemic area, where the neurons displayed enhanced immunolabeling for early endosomal antigen-1 and clathrin. The highly efficient uptake of TAT peptides occurred by the same selective mechanism as for conventional tracers. All tracers were targeted to the nucleus and cytoplasm of neurons that appeared viable, although ultimately destined to die. In dissociated cortical neuronal cultures, an excitotoxic dose of N-methyl-D-aspartate induced a similar endocytosis. It was 100 times more efficient with TAT peptides than with dextran, because the former bound to heparan sulfate proteoglycans at the cell surface, but it depended on dynamin and clathrin in both cases. INTERPRETATION: Excitotoxicity-induced endocytosis is the main entry route for protective TAT peptides and targets selectively the neurons that need to be protected.
Resumo:
WE USED A MURINE MODEL OF TRANSIENT FOCAL CEREBRAL ISCHEMIA TO STUDY: 1) in vivo DTI long-term temporal evolution of the apparent diffusion coefficient (ADC) and diffusion fractional anisotropy (FA) at days 4, 10, 15 and 21 after stroke 2) ex vivo distribution of a plasticity-related protein (GAP-43) and its relationship with the ex vivo DTI characteristics of the striato-thalamic pathway (21 days). All animals recovered motor function. In vivo ADC within the infarct was significantly increased after stroke. In the stroke group, GAP-43 expression and FA values were significantly higher in the ipsilateral (IL) striatum and contralateral (CL) hippocampus compared to the shams. DTI tractography showed fiber trajectories connecting the CL striatum to the stroke region, where increased GAP43 and FA were observed and fiber tracts from the CL striatum terminating in the IL hippocampus.Our data demonstrate that DTI changes parallel histological remodeling and recovery of function.
Resumo:
Focal cerebral ischemia is associated with expression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), enzymes whose reaction products contribute to the evolution of ischemic brain injury. We tested the hypothesis that, after cerebral ischemia, nitric oxide (NO) produced by iNOS enhances COX-2 activity, thereby increasing the toxic potential of this enzyme. Cerebral ischemia was produced by middle cerebral artery occlusion in rats or mice. Twenty-four hours after ischemia in rats, iNOS-immunoreactive neutrophils were observed in close proximity (<20 μm) to COX-2-positive cells at the periphery of the infarct. In the olfactory bulb, only COX-2 positive cells were observed. Cerebral ischemia increased the concentration of the COX-2 reaction product prostaglandin E2 (PGE2) in the ischemic area and in the ipsilateral olfactory bulb. The iNOS inhibitor aminoguanidine reduced PGE2 concentration in the infarct, where both iNOS and COX-2 were expressed, but not in the olfactory bulb, where only COX-2 was expressed. Postischemic PGE2 accumulation was reduced significantly in iNOS null mice compared with wild-type controls (C57BL/6 or SV129). The data provide evidence that NO produced by iNOS influences COX-2 activity after focal cerebral ischemia. Pro-inflammatory prostanoids and reactive oxygen species produced by COX-2 may be a previously unrecognized factor by which NO contributes to ischemic brain injury. The pathogenic effect of the interaction between NO, or a derived specie, and COX-2 is likely to play a role also in other brain diseases associated with inflammation.
Resumo:
Early studies showed that the administration of the anti-inflammatory cytokine interleukin-10 (IL10) protects against permanent middle cerebral artery occlusion (MCAO) in mice. In this study, transgenic mice expressing murine IL10 (IL10T) directed by the major histocompatibility complex Ea promoter were produced and used to explore the effect of chronically increased IL10 levels on MCAO-related molecular mechanisms. IL10 was over-expressed in astrocytes, microglia, and endothelial brain cells in IL10T compared with wild type mice. Four days following MCAO, IL10T mice showed a 40% reduction in infarct size which was associated to significantly reduced levels of active caspase 3 compared with wild type mice. Under basal conditions, anti-inflammatory factors such as nerve growth factor and GSH were up-regulated and the pro-inflammatory cytokine IL1beta was down-regulated in the brain of IL10T animals. In addition, these mice displayed increased basal GSH levels in microglial and endothelial cells as well as a marked increase in manganese superoxide dismutase in endothelial lining blood vessels. Following ischemia, IL10T mice showed a marked reduction in pro-inflammatory cytokines, including tumor necrosis factor-alpha, interferon-gamma, and IL1beta. Our data indicate that constitutive IL10 over-expression is associated with a striking resistance to cerebral ischemia that may be attributed to changes in the basal redox properties of glial/endothelial cells.
Resumo:
D-JNKI1, a cell-permeable peptide inhibitor of the c-Jun N-terminal kinase (JNK) pathway, has been shown to be a powerful neuroprotective agent after focal cerebral ischemia in adult mice and young rats. We have investigated the potential neuroprotective effect of D-JNKI1 and the involvement of the JNK pathway in a neonatal rat model of cerebral hypoxia-ischemia. Seven-day-old rats underwent a permanent ligation of the right common carotid artery followed by 2h of hypoxia (8% oxygen). Treatment with D-JNKI1 (0.3mg/kg intraperitoneally) significantly reduced early calpain activation, late caspase-3 activation and, in the thalamus, autophagosome formation, indicating an involvement of JNK in different types of cell death: necrotic, apoptotic and autophagic. However the size of the lesion was unchanged. Further analysis showed that neonatal hypoxia-ischemia induced an immediate decrease in JNK phosphorylation (reflecting mainly P-JNK1) followed by a slow progressive increase (including P-JNK3 54kDa), whereas c-jun and c-fos expression were both strongly activated immediately after hypoxia-ischemia. In conclusion, unlike in adult ischemic models, JNK is only moderately activated after severe cerebral hypoxia-ischemia in neonatal rats and the observed positive effects of D-JNKI1 are insufficient to give neuroprotection. Thus, for perinatal asphyxia, D-JNKI1 can only be considered in association with other therapies.
Resumo:
Brain edema is the main cause of death from brain infarction. The polarized expression of the water channel protein aquaporin-4 (AQP4) on astroglial endfeet surrounding brain microvessels suggests a role in brain water balance. Loss of astrocyte foot process anchoring to the basement membrane (BM) accompanied by the loss of polarized localization of AQP4 to astrocytic endfeet has been shown to be associated with vasogenic/extracellular edema in neuroinflammation. Here, we asked if loss of astrocyte polarity is also observed in cytotoxic/intracellular edema following focal brain ischemia after transient middle cerebral artery occlusion (tMCAO). Upon mild focal brain ischemia, we observed diminished immunostaining for the BM components laminin α4, laminin α2, and the proteoglycan agrin, in the core of the lesion, but not in BMs in the surrounding penumbra. Staining for the astrocyte endfoot anchorage protein β-dystroglycan (DG) was dramatically reduced in both the lesion core and the penumbra, and AQP4 and Kir4.1 showed a loss of polarized localization to astrocytic endfeet. Interestingly, we observed that mice deficient for agrin expression in the brain lack polarized localization of β-DG and AQP4 at astrocytic endfeet and do not develop early cytotoxic/intracellular edema following tMCAO. Taken together, these data indicate that the binding of DG to agrin embedded in the subjacent BM promotes polarized localization of AQP4 to astrocyte endfeet. Reduced DG protein levels and redistribution of AQP4 as observed upon tMCAO might therefore counteract early edema formation and reflect a beneficial mechanism operating in the brain to minimize damage upon ischemia.
Resumo:
This study was aimed to determine whether imipramine chronic treatment promotes neurogenesis in the dentate gyrus (DG) and interferes with neuronal death in the CA1 subfield of the hippocampus after transient global cerebral ischemia (TGCI) in rats. After TGCI, animals were treated with imipramine (20 mg/kg, i.p.) or saline during 14 days. 5-Bromo-2`-deoxyuridine-5`-monophosphate (BrdU) was injected 24 h after the last imipramine or saline injection to label proliferating cells. In order to confirm the effect of TGCI on neuronal death and cell proliferation, a group of animals was sacrificed 7 days after TGCI. Neurogenesis and neurodegeneration were evaluated by doublecortin (DCX)-immunohistochemistry and Fluoro-Jade C (FJC)- staining, respectively. The rate of cell proliferation increases 7 days but returns to basal levels 14 days after TGCI. There was a significant increase in the number of FJC-positive neurons in the CA1 of animals 7 and 14 days after TGCI. Chronic imipramine treatment increased cell proliferation in the SGZ of DG and reduced the neurodegeneration in the CA] of the hippocampus 14 days after TGCI. Immunohistochemistry for DCX detected an increased number of newly generated neurons in the hippocampal DG 14 days after TGCI, which was not affected by imipramine treatment. Further studies are needed to evaluate whether imipramine treatment for longer time would be able to promote survival of newly generated neurons as well as to improve functional recovery after TGCI. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Dissertation presented to obtain the PhD degree in Biochemistry, Neurosciences