968 resultados para fluid flow
Resumo:
Experimental quasi-two-dimensional Zn electrodeposits are grown under forced convection conditions. Large-scale effects, with preferential growth towards the impinging flow, together with small-scale roughness suppression effects are evidenced and separately analyzed by using two different radial cell configurations. Interpretations are given in terms of primary concepts concerning current and concentration distributions.
Resumo:
At subduction zones, oceanic lithosphere that has interacted with sea water is returned to the mantle, heats up during descent and releases fluids by devolatilization of hydrous minerals. Models for the formation of magmas feeding volcanoes above subduction zones require largescale transport of these fluids into overlying mantle wedges(1-3). Fluid flow also seems to be linked to seismicity in subducting slabs. However, the spatial and temporal scales of this fluid flow remain largely unknown, with suggested timescales ranging from tens to tens of thousands of years(3-5). Here we use the Li-Ca-Sr isotope systems to consider fluid sources and quantitatively constrain the duration of subduction-zone fluid release at similar to 70 km depth within subducting oceanic lithosphere, now exhumed in the Chinese Tianshan Mountains. Using lithium-diffusion modelling, we find that the wall-rock porosity adjacent to the flowpath of the fluids increased ten times above the background level. We show that fluids released by devolatilization travelled through the slab along major conduits in pulses with durations of about similar to 200 years. Thus, although the overall slab dehydration process is continuous over millions of years and over a wide range of pressures and temperatures, we conclude that the fluids produced by dehydration in subducting slabs are mobilized in short-lived, channelized fluid-flow events.
Resumo:
Diplomityön tavoitteena oli tarkastella numeerisen virtauslaskennan avulla virtaukseen liittyviä ilmiöitä ja kaasun dispersiota. Diplomityön sisältö on jaettu viiteen osaan; johdantoon, teoriaan, katsaukseen virtauksen mallinnukseen huokoisessa materiaalissa liittyviin tutkimusselvityksiin, numeeriseen mallinnukseen sekä tulosten esittämiseen ja johtopäätöksiin. Diplomityön alussa kiinnitettiin huomiota erilaisiin kokeellisiin, numeerisiin ja teoreettisiin mallinnusmenetelmiin, joilla voidaan mallintaa virtausta huokoisessa materiaalissa. Kirjallisuusosassa tehtiin katsaus aikaisemmin julkaistuihin puoliempiirisiin ja empiirisiin tutkimusselvityksiin, jotka liittyvät huokoisen materiaalin aiheuttamaan painehäviöön. Numeerisessa virtauslaskenta osassa rakennettiin ja esitettiin huokoista materiaalia kuvaavat numeeriset mallit käyttäen kaupallista FLUENT -ohjelmistoa. Työn lopussa arvioitiin teorian, numeerisen virtauslaskennan ja kokeellisten tutkimusselvitysten tuloksia. Kolmiulotteisen huokoisen materiaalinnumeerisessa mallinnuksesta saadut tulokset vaikuttivat lupaavilta. Näiden tulosten perusteella tehtiin suosituksia ajatellen tulevaa virtauksen mallinnusta huokoisessa materiaalissa. Osa tässä diplomityössä esitetyistä tuloksista tullaan esittämään 55. Kanadan Kemiantekniikan konferenssissa Torontossa 1619 Lokakuussa 2005. ASME :n kansainvälisessä tekniikan alan julkaisussa. Työ on hyväksytty esitettäväksi esitettäväksi laskennallisen virtausmekaniikan (CFD) aihealueessa 'Peruskäsitteet'. Lisäksi työn yksityiskohtaiset tulokset tullaan lähettämään myös CES:n julkaisuun.
Resumo:
The gold mineralization of the Hutti Mine is hosted by nine parallel, N - S trending, steeply dipping, 2 - 10 m wide shear zones, that transect Archaean amphibolites. The shear zones were formed after peak metamorphism during retrograde ductile D, shearing in the lower amphibolite facies. They were reactivated in the lower to mid greenschist facies by brittle-ductile D-3 shearing and intense quartz veining. The development of a S-2-S-3 crenulation cleavage facilitates the discrimination between the two deformation events and contemporaneous alteration and gold mineralization. Ductile D, shearing is associated with a pervasively developed distal chlorite - sed cite alteration assemblage in the outer parts of the shear zones and the proximal biotite-plagioclase alteration in the center of the shear zones. D3 is characterized by development of the inner chlorite-K-feldspar alteration, which forms a centimeter-scale alteration halo surrounding the laminated quartz veins and replaces earlier biotite along S-3. The average size of the laminated vein systems is 30-50 m along strike as well as down-dip and 2-6 m in width. Mass balance calculations suggest strong metasomatic changes for the proximal biotite-plagioclase alteration yielding mass and volume increase of ca. 16% and 12%, respectively. The calculated mass and volume changes of the distal chlorite-sericite alteration (ca. 11%, ca. 8%) are lower. The decrease in 6180 values of the whole rock from around 7.5 parts per thousand for the host rocks to 6-7 parts per thousand for the distal chlorite-sericite and the proximal biotite-plagioclase alteration and around 5 parts per thousand for the inner chlorite-K-feldspar alteration suggests hydrothermal alteration during two-stage deformation and fluid flow. The ductile D-2 deformation in the lower amphibolite facies has provided grain scale porosities by microfracturing. The pervasive, steady-state fluid flow resulted in a disseminated style of gold-sulfide mineralization and a penetrative alteration of the host rocks. Alternating ductile and brittle D3 deformation during lower to mid greenschist facies conditions followed the fault-valve process. Ductile creep in the shear zones resulted in a low permeability environment leading to fluid pressure build-up. Strongly episodic fluid advection and mass transfer was controlled by repeated seismic fracturing during the formation of laminated quartz(-gold) veins. The limitation of quartz veins to the extent of earlier shear zones indicate the importance of preexisting anisotropies for fault-valve action and economic gold mineralization. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
S u b s u r face fluid flow plays a significant role in many geologic processes and is increasingly being studied in the scale of sedimentary basins and geologic time perspective. Many economic resources such as petroleum and mineral deposits are products of basin scale fluid flow operating over large periods of time. Such ancient flow systems can be studied through analysis of diagenetic alterations and fluid inclusions to constrain physical and chemical conditions of fluids and rocks during their paleohy d r og e o l ogic evolution. Basin simulation models are useful to complement the paleohy d r og e o l ogic record preserved in the rocks and to derive conceptual models on hydraulic basin evolution and generation of economic resources. Different types of fluid flow regimes may evo l ve during basin evolution. The most important with respect to flow rates and capacity for transport of solutes and thermal energy is gr avitational fluid flow driven by the topographic configuration of a basin. Such flow systems require the basin to be elevated above sea level. Consolidational fluid flow is the principal fluid migration process in basins below sea level, caused by loading of compressible rocks. Flow rates of such systems are several orders of magnitude below topogr a p hy driven flow. Howeve r, consolidation may create significant fluid ove rpressure. Episodic dewatering of ove rpressured compart m e n t s m ay cause sudden fluid release with elevated flow velocities and may cause a transient local thermal and chemical disequilibrium betwe e n fluid and rock. This paper gives an ove rv i ew on subsurface fluid flow processes at basin scale and presents examples related to the Pe n e d è s basin in the central Catalan continental margin including the offshore Barcelona half-graben and the compressive South-Pyrenean basin.
Resumo:
The aim of this work is to study flow properties at T-junction of pipe, pressure loss suffered by the flow after passing through T-junction and to study reliability of the classical engineering formulas used to find head loss for T-junction of pipes. In this we have compared our results with CFD software packages with classical formula and made an attempt to determine accuracy of the classical formulas. In this work we have studies head loss in T-junction of pipes with various inlet velocities, head loss in T-junction of pipes when the angle of the junction is slightly different from 90 degrees and T-junction with different area of cross-section of the main pipe and branch pipe. In this work we have simulated the flow at T-junction of pipe with FLUENT and Comsol Multiphysics and observed flow properties inside the T-junction and studied the head loss suffered by fluid flow after passing through the junction. We have also compared pressure (head) losses obtained by classical formulas by A. Vazsonyi and Andrew Gardel and formulas obtained by assuming T-junction as combination of other pipe components and observations obtained from software experiments. One of the purposes of this study is also to study change in pressure loss with change in angle of T-junction. Using software we can have better view of flow inside the junction and study turbulence, kinetic energy, pressure loss etc. Such simulations save a lot of time and can be performed without actually doing the experiment. There were no real life experiments made, the results obtained completely rely on accuracy of software and numerical methods used.
Resumo:
The objective of the work is to study fluid flow behavior through a pinch valve and to estimate the flow coefficient (KV ) at different opening positions of the valve. The flow inside a compressed valve is more complex than in a straight pipe, and it is one of main topics of interest for engineers in process industry. In the present work, we have numerically simulated compressed valve flow at different opening positions. In order to simulate the flow through pinch valve, several models of the elastomeric valve tube (pinch valve tube) at different opening positions were constructed in 2D-axisymmetric and 3D geometries. The numerical simulations were performed with the CFD packages; ANSYS FLUENT and ANSYS CFX by using parallel computing. The distributions of static pressure, velocity and turbulent kinetic energy have been studied at different opening positions of the valve in both 2D-axisymmetric and 3D experiments. The flow coefficient (KV ) values have been measured at different valve openings and are compared between 2D-axisymmetric and 3D simulation results.
Resumo:
Hydraulic head is distributed through a medium with porous aspect. The analysis of hydraulic head from one point to another is used by the Richard's equation. This equation is equivalent to the groundwater ow equation that predicts the volumetric water contents. COMSOL 3.5 is used for computation applying Richard's equation. A rectangle of 100 meters of length and 10 meters of large (depth) with 0,1 m/s fl ux of inlet as source of our fl uid is simulated. The domain have Richards' equation model in two dimension (2D). Hydraulic head increases proportional with moisture content.
Resumo:
The bedrock of old crystalline cratons is characteristically saturated with brittle structures formed during successive superimposed episodes of deformation and under varying stress regimes. As a result, the crust effectively deforms through the reactivation of pre-existing structures rather than by through the activation, or generation, of new ones, and is said to be in a state of 'structural maturity'. By combining data from Olkiluoto Island, southwestern Finland, which has been investigated as the potential site of a deep geological repository for high-level nuclear waste, with observations from southern Sweden, it can be concluded that the southern part of the Svecofennian shield had already attained structural maturity during the Mesoproterozoic era. This indicates that the phase of activation of the crust, i.e. the time interval during which new fractures were generated, was brief in comparison to the subsequent reactivation phase. Structural maturity of the bedrock was also attained relatively rapidly in Namaqualand, western South Africa, after the formation of first brittle structures during Neoproterozoic time. Subsequent brittle deformation in Namaqualand was controlled by the reactivation of pre-existing strike-slip faults.In such settings, seismic events are likely to occur through reactivation of pre-existing zones that are favourably oriented with respect to prevailing stresses. In Namaqualand, this is shown for present day seismicity by slip tendency analysis, and at Olkiluoto, for a Neoproterozoic earthquake reactivating a Mesoproterozoic fault. By combining detailed field observations with the results of paleostress inversions and relative and absolute time constraints, seven distinctm superimposed paleostress regimes have been recognized in the Olkiluoto region. From oldest to youngest these are: (1) NW-SE to NNW-SSE transpression, which prevailed soon after 1.75 Ga, when the crust had sufficiently cooled down to allow brittle deformation to occur. During this phase conjugate NNW-SSE and NE-SW striking strike-slip faults were active simultaneous with reactivation of SE-dipping low-angle shear zones and foliation planes. This was followed by (2) N-S to NE-SW transpression, which caused partial reactivation of structures formed in the first event; (3) NW-SE extension during the Gothian orogeny and at the time of rapakivi magmatism and intrusion of diabase dikes; (4) NE-SW transtension that occurred between 1.60 and 1.30 Ga and which also formed the NW-SE-trending Satakunta graben located some 20 km north of Olkiluoto. Greisen-type veins also formed during this phase. (5) NE-SW compression that postdates both the formation of the 1.56 Ga rapakivi granites and 1.27 Ga olivine diabases of the region; (6) E-W transpression during the early stages of the Mesoproterozoic Sveconorwegian orogeny and which also predated (7) almost coaxial E-W extension attributed to the collapse of the Sveconorwegian orogeny. The kinematic analysis of fracture systems in crystalline bedrock also provides a robust framework for evaluating fluid-rock interaction in the brittle regime; this is essential in assessment of bedrock integrity for numerous geo-engineering applications, including groundwater management, transient or permanent CO2 storage and site investigations for permanent waste disposal. Investigations at Olkiluoto revealed that fluid flow along fractures is coupled with low normal tractions due to in-situ stresses and thus deviates from the generally accepted critically stressed fracture concept, where fluid flow is concentrated on fractures on the verge of failure. The difference is linked to the shallow conditions of Olkiluoto - due to the low differential stresses inherent at shallow depths, fracture activation and fluid flow is controlled by dilation due to low normal tractions. At deeper settings, however, fluid flow is controlled by fracture criticality caused by large differential stress, which drives shear deformation instead of dilation.
Resumo:
For inviscid fluid flow in any n-dimensional Riemannian manifold, new conserved vorticity integrals generalizing helicity, enstrophy, and entropy circulation are derived for lower-dimensional surfaces that move along fluid streamlines. Conditions are determined for which the integrals yield constants of motion for the fluid. In the case when an inviscid fluid is isentropic, these new constants of motion generalize Kelvin’s circulation theorem from closed loops to closed surfaces of any dimension.
Resumo:
Effective medium approximations for the frequency-dependent and complex-valued effective stiffness tensors of cracked/ porous rocks with multiple solid constituents are developed on the basis of the T-matrix approach (based on integral equation methods for quasi-static composites), the elastic - viscoelastic correspondence principle, and a unified treatment of the local and global flow mechanisms, which is consistent with the principle of fluid mass conservation. The main advantage of using the T-matrix approach, rather than the first-order approach of Eshelby or the second-order approach of Hudson, is that it produces physically plausible results even when the volume concentrations of inclusions or cavities are no longer small. The new formulae, which operates with an arbitrary homogeneous (anisotropic) reference medium and contains terms of all order in the volume concentrations of solid particles and communicating cavities, take explicitly account of inclusion shape and spatial distribution independently. We show analytically that an expansion of the T-matrix formulae to first order in the volume concentration of cavities (in agreement with the dilute estimate of Eshelby) has the correct dependence on the properties of the saturating fluid, in the sense that it is consistent with the Brown-Korringa relation, when the frequency is sufficiently low. We present numerical results for the (anisotropic) effective viscoelastic properties of a cracked permeable medium with finite storage porosity, indicating that the complete T-matrix formulae (including the higher-order terms) are generally consistent with the Brown-Korringa relation, at least if we assume the spatial distribution of cavities to be the same for all cavity pairs. We have found an efficient way to treat statistical correlations in the shapes and orientations of the communicating cavities, and also obtained a reasonable match between theoretical predictions (based on a dual porosity model for quartz-clay mixtures, involving relatively flat clay-related pores and more rounded quartz-related pores) and laboratory results for the ultrasonic velocity and attenuation spectra of a suite of typical reservoir rocks. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The ever-increasing robustness and reliability of flow-simulation methods have consolidated CFD as a major tool in virtually all branches of fluid mechanics. Traditionally, those methods have played a crucial role in the analysis of flow physics. In more recent years, though, the subject has broadened considerably, with the development of optimization and inverse design applications. Since then, the search for efficient ways to evaluate flow-sensitivity gradients has received the attention of numerous researchers. In this scenario, the adjoint method has emerged as, quite possibly, the most powerful tool for the job, which heightens the need for a clear understanding of its conceptual basis. Yet, some of its underlying aspects are still subject to debate in the literature, despite all the research that has been carried out on the method. Such is the case with the adjoint boundary and internal conditions, in particular. The present work aims to shed more light on that topic, with emphasis on the need for an internal shock condition. By following the path of previous authors, the quasi-1D Euler problem is used as a vehicle to explore those concepts. The results clearly indicate that the behavior of the adjoint solution through a shock wave ultimately depends upon the nature of the objective functional.