969 resultados para flag leaf
Resumo:
小麦旗叶的光合产物是其籽粒碳水化合物的主要来源,因此如何提高旗叶的光合能力从而提高小麦产量一直是小麦研究的热点。但是以往对高产小麦旗叶的研究主要集中在光合功能和生理生化指标等方面,很少涉及其结构与功能的联系,以及对亲本与子代的旗叶进行对比观察。本文以冬小麦亲本小偃54 、8602及其子代小偃81(高产品种)灌浆期的旗叶为材料,应用细胞离析法、组织切片和荧光显微技术等,对旗叶中叶肉细胞形态、叶绿体数目、叶片厚度、维管束数目和面积等进行了比较观察和测定,旨在探讨小麦旗叶结构与其光合效率的关系。研究结果表明,与亲本小偃54、8602相比,子代小偃81的叶片较厚,横切面内中央大维管束的周长与面积较大;高环数叶肉细胞所占比例、叶肉细胞的周长及其平面面积和细胞内叶绿体的数目等均大于亲本。由此可见,通过小麦品种的改良确实能使其旗叶的结构与光合细胞发生了明显的变化,从而为植物细胞结构和功能的密切关系提供了有力的证据;同时也为作物改良育种提供了又一种新的育种目标。 小麦非叶器官之一的芒,对其结构与光合特性关系的研究尚不够深入和广泛。本实验以具芒小麦高产耐旱品种京411籽粒不同发育时期的芒及旗叶为材料,对其叶绿体结构、放氧速率和磷酸烯醇式丙酮酸羧化酶(PEPCase EC 4.1.1.31)的活性进行了比较观察和测定。超微结构显示,从抽穗期开始,芒和旗叶中的叶绿体基粒及其垛叠度均有增加,之后由灌浆末期开始,叶绿体的膜系统开始逐渐解体。通过放氧速率的测定表明,在芒和旗叶中,光合速率在前几个时期呈上升趋势,随着器官的衰老逐渐下降,但是,旗叶放氧速率的下降比芒中更早。另外,芒的PEPCase活性在籽粒发育的整个过程中均高于旗叶,其中以籽粒干物质形成末期尤为显著。因此,芒对高产小麦籽粒的形成,特别是在干物质形成的后期起着更为重要的作用。
Resumo:
小麦是我国的重要粮食作物,小麦籽粒产量的形成主要来自小麦旗叶的光合同化产物,但是,小麦籽粒的灌浆时期正好伴随着旗叶的衰老过程,因此,研究小麦旗叶在衰老期间的光合作用有着重要意义。同时,光合器官也是产生活性氧的重要部位,如何消除衰老叶片中的活性氧,保证衰老旗叶光合作用的进行也有着重要意义。本文对衰老旗叶在衰老过程中的光合作用和抗氧化代谢进行了较为全面的研究。结果如下: 1.在大田小麦衰老旗叶中叶绿素含量,光合速率和RuBPCase活性随着衰老的进程而逐渐降低。但是在衰老过程中光系统II最大光化学效率(Fv/Fm),实际光系统II量子效率,光化学焠灭以及开放的光系统II激发能的利用效率在衰老初期和中期几乎不变,而到衰老晚期急剧下降。非光化学焠灭在衰老初期和中期也是几乎没有明显变化,到衰老晚期迅速上升。光系统II捕光色素复合体在衰老叶片中的下降要慢于光系统II核心和光系统I的下降。这些结果说明衰老叶片中,光系统II在叶绿素含量和光合速率和RuBPCase活性降低的情况下依然保持着完整的功能,而实际光系统II量子效率的下降是由于光系统II反应中心的关闭和光能热耗散的提高引起的。 2.叶黄素循环库随着衰老进程逐渐增加,叶黄素循环的脱环氧化状态也是逐渐增加。由于叶黄素循环在光能热耗散中有着重要贡献,这表明在衰老叶片中光能热耗散的提高与叶黄素循环在衰老叶片中的提高有关。 3.在衰老过程中,小麦旗叶的MDA,抗坏血酸含量以及其与脱氢抗坏血酸比值逐渐增加,谷胱甘肽含量逐渐降低,这说明在衰老叶片中,主要是抗坏血酸作为活性氧清除剂。 4. 分别以不同单位表示抗氧化代谢中各种酶的活性,这些酶包括:脱氢抗坏血酸还原酶,单脱氢抗坏血酸还原酶,抗坏血酸过氧化酶,谷胱甘肽还原酶,过氧化氢酶和超氧化物岐化酶。结果表明:以每克鲜重为单位表示的酶活随着衰老逐渐降低,而以每毫克蛋白表示的酶活都随着衰老逐渐升高,表现趋势为衰老初期小幅度变化,衰老晚期大幅度变化。同时,测定结果表明小麦旗叶衰老过程中的蛋白含量降低。这些说明在衰老过程中抗氧化酶的降解速度可能慢于其他蛋白的降解速度,相对提高了消除活性氧的能力。 5.对大田小麦开花期,衰老中期,衰老晚期的旗叶光合作用日变化作了较为系统的研究。结果表明,在小麦旗叶衰老的三个时期,叶绿素含量和Chl a/b比值以及叶黄素循环库在一天中变化不明显。光合速率随着光强增大而提高,在中午表现出明显的光抑制。光系统II最大光化学效率,实际光系统II量子效率,光化学焠灭和开放的光系统II激发能的利用效率在中午强光下较明显的降低,非光化学焠灭在中午强光下升高。它们的变化幅度都是在开花期和衰老中期较小或者几乎没有变化,而在衰老晚期旗叶中变化幅度明显增大。叶黄素脱环氧化状态随一天中光强的增大而增大,且在衰老晚期叶片中变化幅度最大。这说明在强光条件下,衰老叶片中光系统II仍然维持着完整的功能,这种功能的维持可能与高光强下光系统II的关闭和叶黄素循环参与的光能热耗散的增加有关。 6.对开花期,衰老中期,衰老晚期的旗叶抗氧化物日变化的研究发现:抗坏血酸含量和ASC/DASC都是在衰老晚期中午强光条件下有较明显的升高,在早晨和傍晚弱光条件下其值较低。脱氢抗坏血酸含量和ASC+DASC含量在一天中未表现出明显的变化规律。GSH+GSSG,GSH和GSH/GSSG有相似的变化规律,即在衰老的三个时期都表现出在一天的中午强光下的值比早晨和傍晚弱光条件下要高。GSSG在一天几乎不变。对开花期,衰老中期,衰老晚期旗叶的抗氧化酶日变化的研究发现:在开花期和衰老中期,DHAR活性一天中变化不大;在衰老晚期,其活性在中午强光条件下显著上升,而早晨和下午光强较弱的条件下,活性相对较低。ASPX, MDHAR, CAT和GR活性变化与DHAR类似。SOD活性在一天中变化不明显。结果表明,强光促进了抗氧化代谢中抗坏血酸的再生,特别在严重衰老叶片中与抗坏血酸再生有关的酶都在中午强光下有显著提高。严重衰老叶片中其他抗氧化酶在强光下,也表现出显著的提高,在衰老叶片中抗氧化系统提高了消除活性氧的能力,特别是在强光下,抗氧化系统有着重要的作用。
Resumo:
小麦杂交坏死是某些小麦杂交种表现出的叶片提前逐渐死亡的现象。它是由两个坏死基因Ne1和Ne2在杂交种中相遇后发生显性互补引起的。坏死从叶片尖端逐渐过渡到叶片基部,从成熟叶片发展到幼嫩叶片。一些严重坏死的F1完成它的生活周期前就在不同的生长阶段死去,无法获得F1种子,这就限制了携带优良性状的亲本的选择和优良基因的交流。另外,小麦杂交坏死是一个独特的研究植物程序性死亡的遗传系统。虽然小麦杂交坏死这种现象已经发现很多年,但其详细的分子机理却仍然未知。对小麦杂交坏死的分子机理进行深入研究将有助于克服小麦杂交利用中杂交坏死的遗传障碍,此外,也为深入研究植物的PCD机理提供可操作靶分子。 本论文采用高通量蛋白质组研究技术对小麦杂交坏死进行了研究。携带坏死基因Ne2的小麦品种Pan555(P)和携带坏死基因Ne2的小麦品种Zheng891(Z)生长发育完全正常,将两个亲本杂交,所得杂交F1代PZF1表现杂交坏死。在小麦生长阶段8,旗叶(Flag leaf)刚刚出现,PZF1的旗叶下第一片叶子(FL-1)还是完全绿色,FL-2叶尖开始有坏死斑出现。在这个阶段,分别将PZF1,P,Z的FL-2叶剪成相等的尖,中,基三段。我们选择的PZF1的FL-2叶,其叶尖段已经有成片的坏死斑出现;中间段零星出现少量坏死斑点;基部段和亲本一样还是完全的绿色,代表坏死进程中的不同阶段。又选PZF1的FL-1和FL-2分别代表杂交坏死启动前和杂交坏死启动后。两个亲本P和Z的FL-2叶的三段及FL-1叶正常,都是完全绿色。 首先分别分析了PZF1,P和Z的FL-2叶的尖、中、基三段的蛋白表达情况。在PZF1的尖、中、基三段共检测到23个差异表达蛋白点。这23个点在两个亲本的尖、中、基三段中的表达丰度没有显著差异(p<0.05),说明这23个蛋白的差异表达不是由于叶段的不同引起,确与杂交坏死相关。对这23个蛋白进行了MALDI-TOF质谱鉴定,其中18个得到成功鉴定。然后对PZF1,P和Z的FL-1叶和FL-2叶的蛋白表达情况进行了分析。与PZF1的FL-1叶比较,在FL-2叶中检测到19个蛋白上调,20个蛋白下调。这39个蛋白的丰度在两个亲本的FL-1和FL-2叶之间没有显著差异,说明这39个蛋白的差异表达不是由于叶位的不同引起,确与杂交坏死相关。对这39个蛋白进行质谱鉴定其中26个得到成功鉴定。 根据被鉴定蛋白的功能及其表达丰度的变化,对这些蛋白在小麦杂交坏死中可能的作用进行了讨论。与PZF1的FL-2叶基部相比,S-腺苷同型半胱氨酸水解酶(S-adenosyl homocysteine hydrolase)在中部极显著(p<0.01)下调,而在中部和尖段之间没有显著差异,保持低丰度不变。腺苷甲硫氨酸3(AdoMet synthase 3)和甲硫氨酸合成酶1(Methionine synthase 1)都在PZF1的FL-2叶尖段上调。甲基化循环中的这3个酶比例的不协调可能会以不同的方式加速细胞老化。 与PZF1的FL-1叶比较,尿卟啉环脱羧酶(Uroporphyrinogen decarboxylase)在FL-2叶中下调,这将引起尿卟啉环III的积累。脂加氧酶(Lipoxygenases)在FL-2叶中上调。尿卟啉环III的积累和脂加氧酶的上调都会引起细胞内活性氧的增加。另外活性氧和脂加氧酶都会使脂发生过氧化作用,进而导致细胞膜完整性受到破坏,最终可能导致细胞死亡。 与基部段比较,在PZF1的FL-2叶的尖段和/或中间段;以及与PZF1的FL-1叶比较,在FL-2叶中,都有很多防御性蛋白的上调,这暗示应对活性氧、脂过氧化、甲基化循环中三个酶比例的不协调等引起的对细胞的破坏作用,细胞可能启动了抗细胞死亡系统来应对这种细胞内部的胁迫。 然而,与基部段比较,一些能量相关蛋白在PZF1的FL-2叶的尖段和/或中间段;以及与PZF1的FL-1叶比较,在FL-2叶中的异常表达可能会以干扰能量循环的方式加速细胞死亡。另外,与FL-2基部段比较,在尖段和/或中间段,以及与PZF1的FL-1比较,在FL-2中,都有一些防御性蛋白、蛋白合成相关的蛋白以及单链DNA结合蛋白下调,它们的变化可能会降低细胞的抵抗力,蛋白合成能力以及DNA修复能力。细胞正常代谢的很多方面都受到干扰从而使PZF1叶细胞最终走向死亡。 本研究中发现了三个甲基化循环中的酶变化,而且S-腺苷同型半胱氨酸水解酶是在坏死进程的较早阶段发生下调,它的变化可能是小麦杂交坏死的一个诱因,这暗示小麦杂交坏死可能是一个表观遗传学事件。另外本研究还发现一些和活性氧,脂氧化等相关的蛋白的变化,而活性氧增加和脂氧化都是细胞凋亡的典型特征。所以本研究为表观遗传细胞凋亡和氧化胁迫细胞凋亡的研究提供了很有价值的信息。
Resumo:
为揭示灌浆期水分亏缺对不同倍性小麦光合特性和产量的影响,选用二倍体野生一粒、栽培一粒小麦,四倍体野生二粒、栽培二粒小麦,六倍体小麦"长武134"和"陕253"等6个小麦品种作为供试材料,通过盆栽控水方式,对不同倍性小麦旗叶净光合速率、瞬时水分利用效率和产量进行了研究。结果表明,在正常供水、轻度干旱和严重干旱3种水分处理下,不同倍性小麦旗叶净光合速率、水分利用效率和产量差异极显著。在灌浆过程中,水分亏缺对不同倍性小麦净光合速率变化趋势的影响不明显。而最大净光合速率和水分利用效率随水分胁迫的加重而减小。六倍体小麦平均最大净光合速率为22.03μmol CO2.m-2.s-1),高于二倍体和四倍体小麦。六倍体小麦平均最大水分利用效率约为7.12μmol CO2/mmol H2O,分别是四倍体和二倍体的1.63倍和2.05倍,并且在灌浆开始时就达到最大。因此,小麦长期进化过程中,六倍体小麦花后较强的光合能力和较高的水分利用效率是提高小麦产量的重要生理基础。
Resumo:
研究干旱对小麦旗叶光合产物供应能力的影响,揭示小麦抗旱高产的生理机制,为提高小麦的抗旱能力及高产稳产提供理论依据。【方法】在防雨池栽培条件下,以旱地冬小麦品种长武134(抗旱性强)和水地冬小麦品种陕253(抗旱性弱)为试材,以适宜水分处理为对照(CK,土壤含水量为田间持水量的70%~75%),研究干旱处理(土壤含水量为田间持水量的50%~55%)对不同冬小麦旗叶光合产物供应速率(净光合速率和蔗糖合成能力)和供应持续期的影响。【结果】与对照相比,干旱处理降低了冬小麦灌浆中后期旗叶净光合速率,缩短了净光合速率高值持续期(PAD),其中长武134降幅较小,净光合速率较高;干旱处理提高了冬小麦灌浆初期旗叶的蔗糖磷酸合成酶(SPS)活性,其中长武134增幅较大,且在灌浆中后期依然能保持相对较高的蔗糖供应能力;干旱处理缩短了冬小麦叶绿素含量缓降期(RSP),提高了丙二醛(MDA)含量,加速了旗叶的衰老,缩短了光合产物的供应持续期,其中长武134受干旱影响较小;干旱处理降低了冬小麦灌浆中后期主茎穗粒质量积累量及其速率,其中长武134降幅较小。【结论】干旱条件下,抗旱品种长武134旗叶在灌浆中后期可维持较高的光合产物...
Resumo:
水稻是重要的粮食作物,其产量的增加和品质的改良都是关系国计民生的大事。就我国现阶段的国情而言,水稻产量在现有水平上稳步提升仍是未来十几年甚至几十年农业生产最重要的目标之一。尽管根据“超级杂交水稻育种”的战略设想和水稻育种实践,通过不断地改进育种技术可望在更高的产量水平上进行水稻杂种优势利用,在稻属植物内还具有很大的产量潜力可以挖掘。然而,仅仅从现有的种质基础出发,要更大幅度提高水稻单产,实现“超级杂交稻”的目标也存在一些困难:现有的推广品种是二倍体,尽管种类众多,但是其基因组的来源相对单一;同时,水稻基因组DNA含量也是作物中最少的,基因组内寻求开发潜力有一定困难;水稻作为C3植物,光合利用效率不高也是制约水稻产量提高的因素之一。因此,寻求常规手段以外的技术突破或者方法创新,是实现“超级杂交稻”的目标的迫切需求。本研究利用秋水仙素能抑制细胞分裂中纺锤丝的收缩、使细胞染色体加倍的作用,对水稻幼穗诱导的愈伤组织细胞进行加倍,并分化出再生植株;创制出水稻同源四倍体新的种质材料,在此基础上选育水稻同源四倍体雄性不育三系材料,并实现水稻同源四倍体的三系配套,开展水稻同源四倍体杂种优势利用和四倍体杂交水稻选育研究,建立水稻同源四倍体杂种优势利用的新技术体系。这不仅有助于倍性水平杂种优势的开拓和利用,同时也将为我国新世纪“超级稻”育种研究开辟一条新的技术途径。 水稻幼穗诱导愈伤组织并分化成苗是一项成熟、简单的组织培养技术。本研究以普通二倍体水稻亲本为材料,用秋水仙素进行水稻的多倍体化诱导,创制同源四倍体水稻三系亲本材料并对其进行鉴定。多倍体化以秋水仙素诱导的愈伤组织培养为基础,研究不同秋水仙素浓度梯度和愈伤组织诱导培养基组合对诱导四倍体植株的影响。结果表明在MS+2,4 D 1.0mg/L+ KT0.2mg/L+ IAA0.2mg/L 和500mg/L的秋水仙素处理下,水稻愈伤组织染色体加倍(有最高的效率)效果较好,平均加倍频率可达25.26%,其中,材料CDR22和IR26诱导较易成功,加倍频率分别达到75%和26.5%;相对材料94109 1.3%加倍频率和冈46B 10.8%加倍频率,诱导率差异极显著。 对水稻四倍体材料进行了形态学鉴定结果表明,与二倍体水稻对照相比其株高、穗长、花粉育性等主要农艺性状,确定四倍体材料在穗长和千粒重两方面极显著提高,种子的长度和宽度也显著增长。对花粉育性鉴定,确认水稻四倍体不育系材料仍为不育,保持系材料自交和杂交可育,恢复系材料自交和杂交可育。对四倍体材料进行细胞形态、染色体数目等方面进行细胞学鉴定,经核型分析表明水稻四倍体材料具有48条染色体,是二倍体水稻的两倍。水稻四倍体材料根尖分生组织细胞与二倍体的根尖分生组织细胞相比,细胞体积、细胞核和核仁显著增大。四倍体三系材料在细胞有丝分裂中期均可规则排列在赤道板,并能均等地移向两极;后期观察中没有发现染色体分离滞后现象,分裂末期细胞能够形成大小相对均一的子细胞。水稻同源四倍体三系材料细胞分裂未见异常,植株生长发育正常。 从1996年至2006年,针对结实率、有效分蘖、着粒数和穗长等主要农艺性状,通过系谱选育的方法,对培育的同源四倍体水稻亲本材料进行了连续选择和改良,取得较好成效。表现为结实率的改良效果极佳,所有改良材料的平均结实率均呈上升趋势,如D237(29.70%→72.70%)、DTB(19.55%→53.21%)等。有效分蘖总体呈现上升趋势,但在不同的年份,如1998和2002存在较大的负向波动。部分材料改良效果明显,如D19B(5.87→13.50)、D什香 (7.00→12.00)等;同时一些材料如DTB和D明恢63虽然总体略有提高,但在不同的年份波动很大,因此存在较大改良阻力,原因还有待进一步研究。着粒数的改良上升趋势比较显著,除保持系的DTB之外,其余材料的平均着粒数有显著提高。穗长的改良阻力较大,虽然不同材料总体上有所提高,但效果并不显著,并且不同年份有较大负向波动(2001)。此外还对株高、剑叶长等性状也进行了选择,但效果不显著,原因有待进一步提高。同源四倍体材料产量相关性状遗传改良幅度不一致,保持系和恢复系间的遗传改良效果也存在差异。这为同源四倍体水稻的进一步利用打下了良好的基础。 籼稻和粳稻亚种间杂交及杂种优势利用的主要障碍就是其低的结实率。而同源四倍体杂交水稻的研究为提高杂交水稻的杂种优势利用创造了新的途径。本研究通过随机区组设计方案,挑选性状优良的二倍体水稻材料,包括雄性不育系,保持系和恢复系进行秋水仙素诱导加倍,从而获得同源四倍体水稻对应的三系材料。利用选育的优良水稻同源四倍体三系材料,配制7个杂交组合,杂交F1代与其恢复系亲本进行比较,用于计算超亲优势(HB);而杂交F1代与生产上大面积推广的二倍体杂交品种汕优63进行比较,用于计算杂种优势。结果显示,同源四倍体杂交水稻的超亲优势表现为:每株有效穗变化幅度为1.4%至105.9%,总粒数为0.5%至74.3%,每穗实粒数为17.6%至255.7%,结实率为9.6%至130.4%。这些农艺性状的改良使得这7个杂种F1的理论产量的超亲优势高达64.8%至672.7%。小区试验中四倍体杂交水稻组合T461A/T4002和T461A/T4193分别比二倍体对照汕优63提高46.3%和38.3%以上,除一个品种以外所有品种产量均接近或高于汕优63的产量。同源四倍体水稻强大的杂种优势表明,亚种间杂交育性低的问题可通过四倍体化及强化选择来解决。此外,同源四倍体杂交水稻器官的巨大性也是其产量提高的有利因素,水稻同源四倍体三系杂种优势利用研究具有一定的理论价值和商业生产潜力。 Rice is one of the major food crops, the improvement of the production and quality of it is an important thing related to the people's livelihood. On China's current national conditions, steadily increase of the rice yield based on the current level is still one of the most important goals in the next decade or even decades of agricultural production. According to the "super hybrid rice breeding" the strategic and rice breeding practice, improvement of the use of hybrid rice heterosis through continuous improvements in breeding technology is expected to get a higher level of rice yield, there are also a great yield potential can be exploited. However, there are also some difficulties to increase rice yield obviously and implement the goal of "super hybrid rice" based on the existing germplasm: Rice varieties in promotion are diploid, although there are many varieties, but their genome are from a comparatively single source; Meanwhile, the rice genome DNA are the least among the crops, it is difficult to exploit the development potential within the genome; Rice as C3 plants, photosynthetic efficiency is not high, it is one of the factors constraint rice yield. Therefore, seeking technological breakthroughs or innovative methods different from conventional means is the urgent needs to reach the target of "super hybrid rice". Using colchicine inhibit spindle contraction during cell division, double the cell chromosome, we induced callus cells from rice panicle to be doubled, and differentiated regeneration; we created a new autotetraploid rice germplasm material, and on that basis we bred male sterility three line autotetraploid rice materials, and the achieved the three line rice autotetraploid matchmaking, researched in autotetraploid rice heterosis usage and tetraploid hybrid rice breeding, constituted a new technology system of autotetraploid hybrid rice heterosis utilization. This not only helps the tetraploid rice heterosis exploration and use, but also inaugurates a new technical means for China in the new century "super rice" breeding research. We chose ordinary diploid rice as materials, using colchicine to induce the polyploidization, created the autotetraploid rice three-line materials and identified them. The polyploidization was based on the colchicine-induced callus tissue culture, and we experimented different colchicine concentrations and culture mediums to induce tetraploid plants, confirmed that the optimal concentration for inducement was 500 mg/L, the average induce rate was 25.26 %. Among all the materials, CDR22 and IR26 had higher induced rate; in contrary, 94109 and GANG46B had lower induced rate, the difference was significant. Autotetraploid materials was identified of both morphological and cytological, compared plant height, length of pollen sterility, and other major agronomic traits with a diploid rice as the control plant, identified that the autotetraploid materials had very significant advantages in ear length and thousand-grain weight, as well as the size of the seeds. Cytology identification included observation of the cell morphology, the number of chromosomes, and karyotype analysis on the autotetraploid materials confirmed that their chromosome number was 48, twice of the diploid rice. Mitoses in the three lines were common: chromosomes arrayed normally in metaphase and separated balanced into the two poles, chromosome moved without lagging in anaphase and daughter cells normally formed in telophase except one. It has been proved that tetraploid rice has normal meiosis as their diploid relatives, which usually including series of sub-phases as interphase, prophase I (five sub-phases), prophase II, metaphase I, II, anaphase I, II and telophase I, II. However, abnormal phenomena, such as formation of tetravalent, trivalent and univalent, chromosome lagging and so on, which would finally block meiosis. Configurations of chromosome in metaphaseⅠwere versatile in structure and form accept the bivalent. That condition varied in different strain, suggesting more complex paring configurations and more versatile genetic characters in tetraploid rice. All these abnormalities in meiosis contributed to low fertility of gamete and might consequently resulted in low seed setting. Successive selection and improvement on seed set, productive tiller per plant, total grains per panicle, panicle length and so on had been carried out from 1996 to 2006. The raise of seed sets was significant in both restorers and maintainers. Seed sets of some strains were improved more significantly than others, for example D237(29.70%→72.70%)、DTB(19.55%→53.21%)and et al.. Productive tiller per plant was improved to some extant. The tendency of improvement was rising on the whole but changed in some years such as 1998 and 2002. Part of the stains increased greatly, such as D19B(5.87→13.50)、Dshixiang (7.00→12.00) and so on, but some strains including DTB and Dminghui63 only increased little and decreased in some years by unknown reason. Total grains per panicle increased significantly and all strains except DTB increased. Improvement of panicle length termed to be hard. Different strains showed different capacities for improvement and floating existed in different years for example 2001. It has been proved that other agronomical traits including plant length, flag leaf length and so on could be improved but not significantly by selection also. In a word, agronomical traits could be raised by successive selection that is prerequisite for further utility of autotetraploid rice. Poor fertility is the main barrier for utilizing heterosis between the two rice (Oryza stiva L.) sub-species, indica and japonica. Recently, the development of autotetraploid hybrids (2n=4x=48) has been suggested as a new method for increasing heterosis in hybrid rice. Using standard experimental protocols, the elite diploid rice male sterile, maintainer, and restorer lines were colchine-doubled and autotetraploid counterparts were obtained. Seven resulting hybrids were analyzed for heterobeltiosis (HB), where the F1 was compared to the male parent, and the degree of heterosis, where the F1 was compared to the diploid commercial hybrid, Shanyou 63. The HB among the autotetraploid hybrids ranged from 1.4 to 105.9% for the productive panicles per plant, 0.5 to 74.3% for total kernels per panicle, 17.6 to 255.7% for filled kernels per panicle, and 9.6 to 130.4% for seed set. Improvements in these yield components resulted in the HB for kernel yield ranging from 64.8 to 672.7% among the seven hybrids. Hybrids T461A/T4002 and T461A/T4193 yielded 46.3 and 38.3% more, respectively than Shanyou 63, and all other hybrids but one yielded the same or more than Shanyou 63. The high heterosis for yield suggests that hybrid sterility between two rice sub-species may be overcome by using tetraploid lines followed by intensive selection. Also, the gigantic features of the autotetraploid hybrids may establish a plant structure able to support the higher yield.
Resumo:
利用田间小区试验研究了不同灌水对冬小麦旗叶光合功能衰退的影响。研究表明 :小麦旗叶光合衰退初期引起光合下降的原因主要是气孔限制 ,后期则为非气孔限制。灌水可提高旗叶光合速率 ,并使由气孔限制向非气孔转变的时间推后 ,同时 ,还可增加叶绿素含量 ,增强根活力 ,使小麦旗叶光合功能持续期延长。过量灌水改善旗叶光合衰退的效果主要表现在后期 ,对产量提高的意义并不大。
Resumo:
Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a +/- stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.
Resumo:
The aim of this work was to investigate differences among genotypes in post-anthesis root growth and distribution of modern UK winter wheat cultivars, and the effects of fungicide applications. Post-anthesis root growth of up to six cultivars of winter wheat (Triticum aestivum L.), given either one or three applications of fungicide, was studied in field experiments during two seasons. Total root mass remained unchanged between GS63 (anthesis) and GS85, but root length increased significantly from 14.7 to 31.4 km m(2) in one season. Overall, there was no evidence for a decline in either root mass or length during grain filling. Root mass as a proportion of total plant mass was about 0.05 at GS85. There were significant differences among cultivars in root length and mass especially below 30 cm. Malacca had the smallest root length and Savannah the largest, and Shamrock had a significantly larger root system below 40 cm in both seasons. Fungicide applied at ear emergence had no significant effect on root mass in either season but increased root length (P < 0.01) in the more disease-prone season. By maintaining a green canopy for longer, fungicide applied at flag leaf emergence may have resulted in delayed senescence of the root system and contributed to the post-anthesis maintenance of root mass and length.
Resumo:
Twenty-eight field experiments on sandy-loam soils in the UK (1982-2003) are reviewed by relating the extension of the green area duration of the flag leaf (GLADF) by fungicides to effects on yield and quality of winter wheat. Over all experiments mean grain yield = 8.85t ha(-1) at 85% DM. With regards quality, mean values were: thousand grain weight (TGW) = 44.5 g; specific weight (SWT) = 76.9 kg hl(-1); crude protein concentration (CP (N x 5.7)) = 12.5 % DM; Hagberg falling number (HFN) = 285 s; and sodium dodecyl sulphate (SDS)-sedimentation volume = 69ml. For each day (d) that fungicides increased GLADF there were associated average increases in yield (0.144 1 ha(-1) d(-1), se 0.0049, df = 333), TGW (0.56 gd(-1), se = 0.017) and SWT (0.22 kg hl(-1) d(-1), se 0.011). Some curvature was evident in all these relationships. When GLADF was delayed beyond 700 degrees Cd after anthesis, as was possible in cool wet seasons, responses were curtailed, or less reliable. Despite this apparent terminal sink limitation, fungicide effects on sink size, eg endosperm cell numbers or maximum water mass per grain, were not prerequisites for large effects on grain yield, TGW or SWT. Fungicide effects on CP were variable. Although the average response of CP was negative (-0.029%DM/d; se = 0.00338), this depended on cultivar and disease controlled. Controlling biotrophs such as rusts, (Puccinia spp.) tended to increase CP, whereas controlling a more necrotrophic pathogen (Septoria tritici) usually reducedCP. Irrespective of pathogen controlled, delaying senescence of the flag leaf was associated with increased nitrogen yields in the grain (averaging 2.24 kg N ha-1 d(-1), se = 0.0848) due to both increased N uptake into the above ground crop, and also more efficient remobilisation of N from leaf laminas. When sulphur availability appeared to be adequate, fungicide x cultivar interactions were similar on S as for CP, although N:S ratios tended to decline (i.e. improve for bread making) when S. tritici was controlled. On average, SDS-sedimentation volume declined (-0. 18 ml/d, se = 0.027) with increased GLADF, broadly commensurate with the average effect on CP. Hagberg falling number decreased as fungicide increased GLADF (-2.73 s/d, se = 0.178), indicating an increase in alpha-amylase activity.
Resumo:
Three successive field experiments (2000/01-2002/03) assessed the effect of wheat cultivar (Consort.. Hereward and Shamrock) and fungicide (epoxiconazole and azoxystrobin) applied at and after flag leaf emergence on the nitrogen in the above-ground crop (Total N) and grain (Grain N), net nitrogen remobilization from non-grain tissues (Remobilized N). grain dry matter (Grain Dill), and nitrogen utilization efficiency (NUtE(g) = Grain DM/Total N). Ordinary logistic curves were fitted to the accumulation of Grain N, Grain DM and Remobilized N against thermal time after anthesis and used to simultaneously derive fits for Total N and NUtE(g). When disease was controlled, Consort achieved the greatest Grain DM, Total N, Grain N and NUtEg; in each case due mostly to longer durations, rather than quicker rates, of accumulation. Fungicide application increased final Grain Dill.. Grant N, Total N and Remobilized N, also mostly through effects on duration rather than rate of accumulation. Completely senesced leaf laminas retained less nitrogen when fungicide had been applied compared with leaf laminas previously infected severely with brown rust (Puccinia recondita) and Septoria tritici, or with just S. tritici. Late movement of nitrogen out of fungicide-treated laminas contributed to extended duration of both nitrogen remobilization and grain N filling, and meant that increases in NUtE(g) could occur without simultaneous reductions in grain N concentration.
Resumo:
A model was devised to describe simultaneously the grain masses of water and dry matter against thermal time during grain filling and maturation of winter wheat. The model accounted for a linear increase in water mass of duration anthesis-m(1) (end of rapid water assimilation phase) and rate a, followed by a more stable water mass until in,, after which water mass declined rapidly at rate e. Grain dry matter was described as a linear increase of rate bgf until a maximum size (maxgf) was attained at m(2).The model was fitted to plot data from weekly samples of grains taken from replicated field experiments investigating effects of grain position (apical or medial), fungicide (five contrasting treatments), sowing date (early or late), cultivar (Malacca or Shamrock) and season (2001/2002 and 2002/2003) on grain filling. The model accounted for between 83 and 99% of the variation ( 2) when fitted to data from individual plots, and between 97 and 99% when fitted to treatment means. Endosperm cell number of grains from early-sown plots in the first season were also counted. Differences in maxgf between grain positions and also between cultivars were mostly the result of effects on bgf and were empirically associated with water mass at nil. Fungicide application controlled S. tritici and powdery mildew infection, delayed flag leaf senescence, increased water mass at m(1) (wm(1)), and also increased m(2), bgf and maxgf. Fungicide effects on water mass were detected before fungicide effects on dry matter, but comparison of the effects of individual fungicide treatments showed no evidence that effects on wm(1), nor on endosperm cell numbers at about m(1), were required for fungicide effects on maxgf, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Winter wheat was grown in three field experiments, each repeated over two or three seasons, to investigate effects of extending flag leaf life by fungicide application on the concentration, kg ha(-1) and mg grain(-1) of nitrogen (N) and sulphur (S) as well as N:S ratio and sodium dodecyl sulphate (SDS) sedimentation volume. The experiments involved up to six cultivars and different application rates, timings and frequencies of azoxystrobin and epoxiconazole. For every day the duration to 37 % green flag leaf area (m) was extended, N yield was increased by 2.58 kg ha(-1), N per grain by 0.00957 mg, S yield by 0.186 kg ha(-1) and S per grain by 0.000718 mg. The N:S ratio decreased by 0.0135 per day. There was no evidence that these responses varied with cultivar. In contrast, the relationship between flag leaf life and N or S concentration interacted with cultivar. The N and S concentrations of Shamrock, the cultivar that suffered most from brown rust (Puccinia rccondita), increased with the extension of flag leaf life whereas the concentrations of N and S in Malacca, a cultivar more susceptible to Septoria tritici, decreased as flag leaf senescence was delayed. This was because the relationships between m and N and S yields were much better conserved over cultivars than those between m and thousand grain weight (TGW) and grain yield ha(-1). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Field experiments were conducted over 3 years to study the effect of applying triazole and strobilurin fungicides on the bread-making quality of Malacca winter wheat. Averaged over all years the application of a fungicide programme increased yields, particularly when strobilurin fungicides were applied. Reductions in protein concentration, sulphur concentration, Hageberg failing number and loaf volumes also occurred as the amount of fungicide applied increased. However, there were no deleterious effects of fungicide application on sodium dodecyl sulphate (SDS) sedimentation volumes, N:S ratios or dough theology. Effects of fungicide application on bread-making quality were not product specific. Therefore, it appears that new mechanisms to explain strobilurin effects on bread-making quality do not need to be invoked. Where reductions in protein concentration did occur they could be compensated for by a late-season application of nitrogen either as granular ammonium nitrate at flag leaf emergence or foliar urea at anthesis. These applications, however, sometimes increased the N:S ratio of the extracted flour and failed to improve loaf volume. Multiple regression analysis revealed that main effects of year, flour protein concentration and N:S ratio could explain 93% of the variance in loaf volume caused by season, fungicide and nitrogen treatments. However, an equally good fit was achieved by just including sulphur concentration with year. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Field experiments were conducted over 3 years to assess the effect of a triazole fungicide programme, and additions of strobilurin fungicides to it, on nitrogen uptake, accumulation and partitioning in a range of winter wheat cultivars. Commensurate with delayed senescence, fungicide programmes, particularly when including strobilurins, improved grain yield through improvements in both crop biomass and harvest index, although the relationship with green area duration of the flag leaf (GFLAD) depended on year and in some cases, cultivar. In all years fungicide treatments significantly increased the amount of nitrogen in the above-ground biomass, the amount of nitrogen in the grain and the nitrogen harvest index. All these effects could be linearly related to the fungicide effect on GFLAD. These relationships occasionally interacted with cultivar but there was no evidence that fungicide mode of action affected the relationship between GFLAD and yield of nitrogen in the grain. Fungicide treatments significantly reduced the amount of soil mineral N at harvest and when severe disease had been controlled, the net remobilization of N from the vegetation to the grain after anthesis. Fungicide maintained the filling of grain with both dry matter and nitrogen. The proportionate accumulation of nitrogen in the grain was later than that of dry matter and this difference was greater when fungicide had been applied. Effects of fungicide on grain protein concentration and its relationship with GFLAD were inconsistent over year and cultivar. There were several instances where grain protein concentration was unaffected despite large (1(.)5 t/ha) increases in grain yield following fungicide use. Dilution of grain protein concentration following fungicide use, when it did occur, was small compared with what would be predicted by adoption of other yield increasing techniques such as the selection of high yielding cultivars (based on currently available cultivars) or by growing wheat in favourable climates.