1000 resultados para fixation stability


Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: The purpose of this systematic review was to evaluate relapse and its causes in bilateral sagittal split setback osteotomy with rigid internal fixation. MATERIALS AND METHODS: Literature research was done in databases such as PubMed, Ovid, the Cochrane Library, and Google Scholar Beta. From the original 488 articles identified, 14 articles were finally included. Only 5 studies were prospective and 9 retrospective. The range of postoperative study records was from 6 weeks to 12.7 years. RESULTS: The horizontal short-term relapse was between 9.9% and 62.1% at point B and between 15.7% and 91.3% at pogonion. Long-term relapse was between 14.9% and 28.0% at point B and between 11.5% and 25.4% at pogonion. CONCLUSIONS: Neither large increase nor decrease of relapse was seen when short-term values were compared with long-term. Bilateral sagittal split osteotomy for mandibular setback in combination with orthodontics is an effective treatment of skeletal Class III and a stable procedure in the short- and long-term. The etiology of relapse is multifactorial: the proper seating of the condyles, the amount of setback, the soft tissue and muscles, remaining growth and remodeling, and gender were identified. Age did not show any correlations. To obtain reliable scientific evidence, further short- and long-term research of bilateral sagittal split osteotomy setback with rigid internal fixation should exclude additional surgery, ie, genioplasty or maxillary surgery, and include correlation statistics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: The purpose of this systematic review was to evaluate horizontal relapse and its causes in bilateral sagittal split advancement osteotomy (BSSO) with rigid internal fixation of different types. MATERIALS AND METHODS: A search of the literature was performed in the databases PubMed, Ovid, Cochrane Library, and Google Scholar Beta. From 488 articles identified, 24 articles were finally included. Six studies were prospective, and 18 were retrospective. The range of postoperative study records was 6 months to 12.7 years. RESULTS: The short-term relapse for bicortical screws was between 1.5% and 32.7%, for miniplates between 1.5% and 18.0%, and for bioresorbable bicortical screws between 10.4% and 17.4%, at point B. The long-term relapse for bicortical screws was between 2.0% and 50.3%, and for miniplates between 1.5% and 8.9%, at point B. CONCLUSIONS: BSSO for mandibular advancement is a good treatment option for skeletal Class II, but seems less stable than BSSO setback in the short and long terms. Bicortical screws of titanium, stainless steel, or bioresorbable material show little difference regarding skeletal stability compared with miniplates in the short term. A greater number of studies with larger skeletal long-term relapse rates were evident in patients treated with bicortical screws instead of miniplates. The etiology of relapse is multifactorial, involving the proper seating of the condyles, the amount of advancement, the soft tissue and muscles, the mandibular plane angle, the remaining growth and remodeling, the skill of the surgeon, and preoperative age. Patients with a low mandibular plane angle have increased vertical relapse, whereas patients with a high mandibular plane angle have more horizontal relapse. Advancements in the range of 6 to 7 mm or more predispose to horizontal relapse. To obtain reliable scientific evidence, further short-term and long-term research into BSSO advancement with rigid internal fixation should exclude additional surgery, ie, genioplasty or maxillary surgery, and include a prospective study or randomized clinical trial design with correlation statistics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate the stability of Le Fort I maxillary inferior repositioning surgery in patients with a vertical maxillary deficiency at least 6 months after surgery. The electronic databases were searched to identify all articles reporting the long-term effects of one-piece maxillary inferior repositioning with rigid fixation. Methodological quality was evaluated according to 15 criteria related to study design, measurements, and statistical analysis. Two articles were identified, with a total of 22 patients. The maxilla was repositioned inferiorly from a mean 3.2 to 4.5mm in the anterior part and from a mean 0.1 to 1.8mm in the posterior part. At 6 months post-treatment, absolute relapse of a mean 1.6mm was measured for the anterior part of the maxilla and 0.3mm for the posterior part of the maxilla. The stability of maxillary inferior repositioning surgery could not be confirmed due to the small sample size, unclear diagnosis, and potential confounding factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective This study compared the primary stability of two commercially available acetabular components from the same manufacturer, which differ only in geometry; a hemispherical and a peripherally enhanced design (peripheral self-locking (PSL)). The objective was to determine whether altered geometry resulted in better primary stability. Methods Acetabular components were seated with 0.8 mm to 2 mm interference fits in reamed polyethylene bone substrate of two different densities (0.22 g/cm3 and 0.45 g/cm3). The primary stability of each component design was investigated by measuring the peak failure load during uniaxial pull-out and tangential lever-out tests. Results There was no statistically significant difference in seating force (p = 0.104) or primary stability (pull-out p = 0.171, lever-out p = 0.087) of the two components in the low-density substrate. Similarly, in the high-density substrate, there was no statistically significant difference in the peak pull-out force (p = 0.154) or lever-out moment (p = 0.574) between the designs. However, the PSL component required a significantly higher seating force thanthe hemispherical cup in the high-density bone analogue (p = 0.006). Conclusions Higher seating forces associated with the PSL design may result in inadequate seating and increased risk of component malpositioning or acetabular fracture in the intra-operative setting in high-density bone stock. Our results, if translated clinically, suggest that a purely hemispherical geometry may have an advantage over a peripherally enhanced geometry in high density bone stock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical microenvironment at a fracture site could potentially influence the outcomes of bone fracture healing. It is known that, should the fixation construct be too stiff, or the gap between the fracture ends be too large, bones are less likely to heal. Flexible fixation or so-called “biological fixation” has been shown to encourage the formation of fracture callus, and therefore result in better healing outcomes. However, till date the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and optimal healing fracture healing outcomes has not been fully understood. This paper presents a computational model that can predict healing out-comes from early stage healing data under various fixation configurations. The results of the simulations demonstrate that the change of mechanical microenvironment of fracture site resulting from the different fixation configurations is of importance for the healing outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The image on the retina may move because the eyes move, or because something in the visual scene moves. The brain is not fooled by this ambiguity. Even as we make saccades, we are able to detect whether visual objects remain stable or move. Here we test whether this ability to assess visual stability across saccades is present at the single-neuron level in the frontal eye field (FEF), an area that receives both visual input and information about imminent saccades. Our hypothesis was that neurons in the FEF report whether a visual stimulus remains stable or moves as a saccade is made. Monkeys made saccades in the presence of a visual stimulus outside of the receptive field. In some trials, the stimulus remained stable, but in other trials, it moved during the saccade. In every trial, the stimulus occupied the center of the receptive field after the saccade, thus evoking a reafferent visual response. We found that many FEF neurons signaled, in the strength and timing of their reafferent response, whether the stimulus had remained stable or moved. Reafferent responses were tuned for the amount of stimulus translation, and, in accordance with human psychophysics, tuning was better (more prevalent, stronger, and quicker) for stimuli that moved perpendicular, rather than parallel, to the saccade. Tuning was sometimes present as well for nonspatial transaccadic changes (in color, size, or both). Our results indicate that FEF neurons evaluate visual stability during saccades and may be general purpose detectors of transaccadic visual change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Numerous "in vitro" investigations have been conducted to evaluate the role of screw size and pattern in determining optimal resistance to deformation, often these have been controversial. The aim of this study was to evaluate the effect of screw size and insertion technique on the stability of sagittal split osteotomies.Materials and methods: This study used twenty polyurethane replicas of human hemimandibles with a prefabricated sagittal split ramus osteotomy (SSRO). The hemimandibles were stabilized with 1.5 mm and 2.0 mm titanium screws inserted in an inverted L configuration. All specimens were tested to determine the strength and stability of the fixation.Results: In all cases there was failure of the synthetic bone before there was any evidence of screw failure. There were no significant differences in the load necessary to make the construct fail between the 1.5 or 2.0 mm screw sizes.Conclusion: There was no statistically significant difference between the strengths achieved with screws of 1.5 and 2.0 mm diameters for fixation of SSRO performed in synthetic mandibles. There was no fracture of the 1.5 mm or 2.0 mm diameter screws in any of the tests. 1.5 mm diameter screws in an inverted L pattern have as much stability and mechanical resistance as a 2.0 mm screw, may be safely used for this procedure. (C) 2010 European Association for Cranio-Maxillo-Facial Surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compared the fixation of autogenous onlay bone grafts with cyanoacrylate glue (Super Bonder) and with titanium screws. Twenty rabbits underwent bilateral parietal ostectomies. Bone segments were fixed anteriorly to the resulting bone defect. In group I, the grafts were fixed with 4 min long, 1.5 mm diameter screws; in group II, adhesive was used. The animals were killed after 5, 15, 30, 60 and 120 days. Histomorphometric analysis was used to quantify the maintenance of the graft area. Discrete areas of inflammatory reaction were seen in both groups after 5 days and for group II after 15 days. After 30 days, new bone formation was seen at the interface of the grafts. After 120 days, the graft was incorporated into the host bed in group I and partially incorporated in group II. There was a significant statistical difference regarding the mean graft areas between 15 and 120 days (p < 0.001) and between fixation methods (p < 0.002). Fixation with adhesive promoted a significantly greater area of bone graft than screw fixation, independent of time period. The adhesive was biocompatible, presented similar stability to the screw and maintained the bone area, although there was a delay in graft incorporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have evaluated many methods of internal fixation for sagittal split ramus osteotomy (SSRO), aiming to increase stability of the bone segments while minimizing condylar displacement. The purpose of this study was to evaluate, through biomechanical testing, the stability of the fixation comparing a specially designed bone plate to other two commonly used methods. Thirty hemimandibles were separated into three equal groups. All specimens received SSRO. In Group I the osteotomies were fixed with three 15 mm bicortical positional screws in an inverted-L pattern with an insertion angle of 90°. In Group II, fixation was carried out with a four-hole straight plate and four 6 mm monocortical screws. In Group III, fixation was performed with an adjustable sagittal plate and eight 6 mm monocortical screws. Hemimandibles were submitted to vertical compressive loads, by a mechanical testing unit. Averages and standard deviations were submitted to analysis of variance using the Tukey test with a 5% level of significance. Bicortical screws presented the greatest values of loading resistance. The adjustable miniplate demonstrated 60% lower resistance compared to bicortical screws. Group II presented on average 40% less resistant to the axial loading. © 2012 International Association of Oral and Maxillofacial Surgeons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atrophic mandible fractures are frequently a challenge to stabilize. This study evaluated, through mechanical testing in vitro, the number of locking screws that is sufficient to withstand loading when applied with a locking reconstruction plate in the fixation of atrophic mandible fractures. Polyurethane mandibles with a simulated linear fracture at the midline were used as substratum. Results show that resistance of the fixation is poor when one and two screws are used on each side of the fracture. Three screws on each side of the fracture significantly increases the resistance to displacement. However, no additional strength is added to the construct when more than three screws per side are used. © 2013 International Association of Oral and Maxillofacial Surgeons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several reconstructive methods of the alveolar ridge have been reported to make possible future rehabilitations with implants. Many of these methods come from studies done in animals, mainly rats. With this clinical practice based on scientific evidence, any experimental procedure that can be undertaken in real life is fundamental. Thus, any research that emulates as closely as possible those techniques used in humans are important. This study describes the modification of the technique for block bone graft fixation (onlay) in rats using the lag screw-type technique, normally used in clinical procedures for grafts in humans. The conclusion was that the execution of the described procedures minimizes interference of blood flow in the area because of the maintenance of the muscle insertion in the buckle aspect of the most anterior region of the mandible, providing better stability to the graft and better contact interface of the graft and receptor bed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sagittal split ramus osteotomy (SSRO) is a surgical technique used widely to treat many congenital and acquired mandibular discrepancies. Stabilization of the osteotomy site and the potential for skeletal relapse after the procedure are still major problems. The aim of this study was to compare the mechanical stability of six methods of rigid fixation in SSRO using a biomechanical test model. Sixty polyurethane replicas of human hemimandibles were divided into six groups. In group I, the osteotomies were fixed with two four-hole titanium miniplates; in group II, with one four-hole miniplate; in group III, with one four-hole miniplate + a bicortical screw; in group IV, with a grid miniplate; in group V, with a four-hole locking miniplate; and in group VI, with a six-hole miniplate. A linear load in the premolar region was applied to the hemimandibles. The resistance forces (N) needed to displace the distal segment by 1, 3, and 5 mm were recorded and the data transmitted from the load cell to a computer. One-way analysis of variance with Tukey's post hoc test was performed to compare the means between groups. For the three displacement conditions, there was a strong tendency for the 2.0-mm plate + screw and the grid plate to have higher values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the osteotomies performed in orthognathic surgery, the sagittal osteotomy of the mandibular ramus (SOMR) is the most common, allowing a great range of movements and stable internal fixation (SIF), therefore eliminating the need of maxillomandibular block in the postoperative period. Objectives: The purpose of this study was to evaluate the biomechanical resistance of three national systems used for SIF in SOMR in sheep mandibles. Material and methods: The study was performed in 30 sheep hemi-mandibles randomly divided into 3 experimental groups, each containing 10 hemi-mandibles. The samples were measured to avoid discrepancies and then subjected to SOMR with 5-mm advancement. In group I, 2.0x12 mm screws were used for fixation, inserted in an inverted "L" pattern (inverted "L" group). In group II, fixation was performed with two 2.0x12 mm screws, positioned in a linear pattern and a 4-hole straight miniplate and four 2.0x6.0 mm monocortical screws (hybrid group). In group III, fixation was performed with two-hole straight miniplates and eight 2.0x6.0 mm monocortical screws (mini plate group). All materials used for SIF were supplied by Osteosin - SIN. The hemimandibles were subjected to vertical linear load test by Kratos K2000MP mechanical testing unit for loading registration and displacement. Results: All groups showed similar resistance during mechanical test for loading and displacement, with no statistically significant differences between groups according to analysis of variance. Conclusion: These results indicate that the three techniques of fixation are equally effective for clinical fixation of SOMR.