979 resultados para fire hazard analysis
Resumo:
Updated version of earlier report published in 1975.
Resumo:
Mode of access: Internet.
Resumo:
"NIIC-0600-75-H006."
Resumo:
The purpose of this research was to study interfering products in fire debris analysis, including their identification and characterization. Different substrates were classified, burned, extracted and analyzed in order to identify all the interfering products that they may release. It has been shown that these products come from three different sources: substrate background products, pyrolysis products and possibly combustion products. Different parameters in the creation of these products were evaluated such as the extinguishment process as well as the weathering of the sample prior to the analysis. It has been shown that the presence of these products is not always constant and thus, makes it difficult to extrapolate data to similar cases. Furthermore, some of these products are similar to the ones found in ignitable liquids. Finally, it shows one more time how important it is to collect and analyze control samples in fire debris analysis. ^
Resumo:
An investigation into karst hazard in southern Ontario has been undertaken with the intention of leading to the development of predictive karst models for this region. The reason these are not currently feasible is a lack of sufficient karst data, though this is not entirely due to the lack of karst features. Geophysical data was collected at Lake on the Mountain, Ontario as part of this karst investigation. This data was collected in order to validate the long-standing hypothesis that Lake on the Mountain was formed from a sinkhole collapse. Sub-bottom acoustic profiling data was collected in order to image the lake bottom sediments and bedrock. Vertical bedrock features interpreted as solutionally enlarged fractures were taken as evidence for karst processes on the lake bottom. Additionally, the bedrock topography shows a narrower and more elongated basin than was previously identified, and this also lies parallel to a mapped fault system in the area. This suggests that Lake on the Mountain was formed over a fault zone which also supports the sinkhole hypothesis as it would provide groundwater pathways for karst dissolution to occur. Previous sediment cores suggest that Lake on the Mountain would have formed at some point during the Wisconsinan glaciation with glacial meltwater and glacial loading as potential contributing factors to sinkhole development. A probabilistic karst model for the state of Kentucky, USA, has been generated using the Weights of Evidence method. This model is presented as an example of the predictive capabilities of these kind of data-driven modelling techniques and to show how such models could be applied to karst in Ontario. The model was able to classify 70% of the validation dataset correctly while minimizing false positive identifications. This is moderately successful and could stand to be improved. Finally, suggestions to improving the current karst model of southern Ontario are suggested with the goal of increasing investigation into karst in Ontario and streamlining the reporting system for sinkholes, caves, and other karst features so as to improve the current Ontario karst database.
Resumo:
Diplomityössä on tutustuttu ydinvoimalaitosten paloriskejä käsittelevään todennäköisyyspohjaiseen turvallisuusanalyysiin. Tavoitteena on ollut Olkiluoto 1 ja 2 laitosyksiköiden paloanalyysimenetelmän kehittäminen. Työssä esitetään paloanalyysin pääpiirteet, kaksi erilaista palotaajuuksien estimointimenetelmää sekä palojen leviämisen arviointimenetelmiä. Palotaajuuksien estimointimenetelmistä keskitytään Berryn menetelmän sekä NUREG/CR-6850-palotaajuuslaskentamenetelmän tarkasteluun. Palon leviämisen arvioinnissa on esitetty kolmen erilaisen virtausteknisen laskentatyökalun perusteet sekä palon leviämistodennäköisyyksiä arvioivan Probabilistic Fire Simulator (PFS) -ohjelman käyttöä. Työn aikana on laskettu molemmilla palotaajuuden estimointimenetelmillä palotaajuuksia eri tyyppisille huonetiloille. Berryn menetelmän palotaajuudet olivat pääosin alhaisempia kuin NUREG/CR-6850-menetelmällä lasketut palotaajuudet. Palon leviämistarkastelussa on tutkittu ydinvoimalaitoksen relehuoneen tulipaloa. PFS:n avulla laskettujen leviämistodennäköisyyksien arvoja on vertailtu TVO:n paloanalyysissa käytettyihin kvalitatiivisiin peittokertoimiin. Palon leviämistodennäköisyys eri osajärjestelmien välillä todettiin suuresti riippuvan analyysissaoletetuista vaurioitumislämpötiloista. Tutkittuja menetelmiä hyödyntäen diplomityössä kehitettiin paloanalyysimenetelmäkuvaus. Menetelmäkuvauksessa huonetilojen paloriskit kartoitetaan aluksi Berryn menetelmällä. Näin kaikille laitoksen huonetiloille saadaan arvioitua palotaajuus sekä paloalkutapahtumaluokkien sydänvauriotaajuus. Seuraavaksi suoritetaan valintamenettely, jossa valitut kriteerit täyttäville huonetiloille tehdään tarkentava palotaajuuslaskenta. Tarkentava palotaajuuslaskenta perustuu NUREG/CR-6850-menetelmän mukaisesti huonetilojen realistisiin syttymislähteisiin. Kriittisimpien huonetilojen osalta palon leviämisen arviointiin on tarkoitus hyödyntää numeerista simulointia.
Resumo:
Ydinenergian tuottamisessa turvallisuus on tärkeää. Todennäköisyyspohjaisella riskianalyysillä voidaan arvioida turvallisuusvaatimusten täyttymistä eri tilanteissa. Tässä diplomityössä tarkastellaan todennäköisyyspohjaisen riskianalyysin käyttöä ydinvoimalaitoksen kaapelipalojen vaikutusten arvioinnissa. Työn tarkoituksena on omalta osaltaan edistää ydinvoimalaitosten kaapelipaloturvallisuuden parantamista. Työssä esitellään todennäköisyyspohjaisen riskianalyysin ja todennäköisyyspohjaisen paloanalyysin periaatteet sekä nykyiset kaapelipaloanalyysimenetelmät. Olemassa olevien menetelmien pohjalta kehitettiin menetelmä Olkiluoto 1 ja 2 laitosyksiköiden kaapelipaloturvallisuuden arviointiin. Työssä tarkastellaan myös maailmalla sattuneita kaapelipaloja sekä ydinvoimalaitosten palosimulointiin kehitettyä ohjelmistoa. Työssä kehitetty kaapelipaloanalyysi jakautuu kahteen päävaiheeseen: virtapiirien vika-analyysiin ja virtapiirivikojen todennäköisyysanalyysiin. Virtapiirien vika-analyysi käsittää kaapeleiden vikamoodien, virtapiirien vikaantumisluokkien sekä vikaantumisten vaikutuksien määrittämisen. Virtapiirivikojen todennäköisyysanalyysissä määritetään puolestaan vikaantumistodennäköisyydet kaapelipalokokeiden tulosten pohjalta. Kehitettyä analyysimenetelmää sovellettiin esimerkinomaisesti Olkiluoto 1 ja 2 laitosyksiköiden kahdelle eri huonetilalle. Tuloksena saatiin turvallisuudelle tärkeiden järjestelmien virtapiirien vikaantumismallit sekä niiden todennäköisyydet. Tulosten perusteella voidaan todeta, että työssä kehitetty kaapelipaloanalyysimenetelmä toimi hyvin. Tulevaisuudessa menetelmää on tarkoitus hyödyntää Olkiluoto 1 ja 2 -laitosyksiköiden kaapelipaloturvallisuuden arvioinnissa.
Resumo:
O fogo é um processo frequente nas paisagens do norte de Portugal. Estudos anteriores mostraram que os bosques de azinheira (Quercus rotundifolia) persistem após a passagem do fogo e ajudam a diminuir a sua intensidade e taxa de propagação. Os principais objetivos deste estudo foram compreender e modelar o efeito dos bosques de azinheira no comportamento do fogo ao nível da paisagem da bacia superior do rio Sabor, localizado no nordeste de Portugal. O impacto dos bosques de azinheira no comportamento do fogo foi testado em termos de área e configuração de acordo com cenários que simulam a possível distribuição destas unidades de vegetação na paisagem, considerando uma percentagem de ocupação da azinheira de 2.2% (Low), 18.1% (Moderate), 26.0% (High), e 39.8% (Rivers). Estes cenários tiveram como principal objetivo testar 1) o papel dos bosques de azinheira no comportamento do fogo e 2) de que forma a configuração das manchas de azinheira podem ajudar a diminuir a intensidade da linha de fogo e área ardida. Na modelação do comportamento do fogo foi usado o modelo FlamMap para simular a intensidade de linha do fogo e taxa de propagação do fogo com base em modelos de combustível associados a cada ocupação e uso do solo presente na área de estudo, e também com base em fatores topográficos (altitude, declive e orientação da encosta) e climáticos (humidade e velocidade do vento). Foram ainda usados dois modelos de combustível para a ocupação de azinheira (áreas interiores e de bordadura), desenvolvidos com base em dados reais obtidos na região. Usou-se o software FRAGSATS para a análise dos padrões espaciais das classes de intensidade de linha do fogo, usando-se as métricas Class Area (CA), Number of Patches (NP) e Large Patches Index (LPI). Os resultados obtidos indicaram que a intensidade da linha de fogo e a taxa de propagação do fogo variou entre cenários e entre modelos de combustível para o azinhal. A intensidade média da linha de fogo e a taxa média de propagação do fogo decresceu à medida que a percentagem de área de bosques de azinheira aumentou na paisagem. Também foi observado que as métricas CA, NP e LPI variaram entre cenários e modelos de combustível para o azinhal, decrescendo quando a percentagem de área de bosques de azinheira aumentou. Este estudo permitiu concluir que a variação da percentagem de ocupação e configuração espacial dos bosques de azinheira influenciam o comportamento do fogo, reduzindo, em termos médios, a intensidade da linha de fogo e a taxa de propagação, sugerindo que os bosques de azinhal podem ser usados como medidas silvícolas preventivas para diminuir o risco de incêndio nesta região.
Resumo:
Debris flow hazard modelling at medium (regional) scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal), and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy). The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R), developed at the University of Lausanne (Switzerland). An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise mainly from the models applied and analysis scale, which are neglecting local controlling factors of debris flow hazard. The presented approach of debris flow hazard analysis, associating automatic detection of the source areas and a simple assessment of the debris flow spreading, provided results for consequent hazard and risk studies. However, for the validation and transferability of the parameters and results to other study areas, more testing is needed.
Resumo:
South American seasonally-dry tropical forests (SDTF) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12,000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8,000 and 7,000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined, but severe regional droughts persisted through the mid-Holocene, SDTF, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTF are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.
Resumo:
Two years ago, Mike Fall and I showed you some ideas we had regarding mod¬ern architecture and bird problems. This year we've switched to considering bird hazards in older frame dwellings and on buildings where a fire hazard may be ap¬parent. During a class project some time ago, I was examining a nest of house sparrows and discovered that these birds incorporated cellulose cigarette filters into their nests. Filters were stripped of their paper wrapping and were apparently used by the sparrows as a substitute for or a supplement to fluffy air-born seeds and seed mat¬erials. The incidence of the cigarette filters varied. In the nests that I sampled the numbers varied anywhere from six up to two dozen filter remnants. We feel that the incidence will probably vary with the relative availability of discarded cigarette filter butts. We are concerned with the incidence of filters as an index to the possibility that the birds are picking up live cigarette butts, and this leads us to investigate some records of fires over the past three quarters of a century that were claimed to have been caused by birds.
Resumo:
In Performance-Based Earthquake Engineering (PBEE), evaluating the seismic performance (or seismic risk) of a structure at a designed site has gained major attention, especially in the past decade. One of the objectives in PBEE is to quantify the seismic reliability of a structure (due to the future random earthquakes) at a site. For that purpose, Probabilistic Seismic Demand Analysis (PSDA) is utilized as a tool to estimate the Mean Annual Frequency (MAF) of exceeding a specified value of a structural Engineering Demand Parameter (EDP). This dissertation focuses mainly on applying an average of a certain number of spectral acceleration ordinates in a certain interval of periods, Sa,avg (T1,…,Tn), as scalar ground motion Intensity Measure (IM) when assessing the seismic performance of inelastic structures. Since the interval of periods where computing Sa,avg is related to the more or less influence of higher vibration modes on the inelastic response, it is appropriate to speak about improved IMs. The results using these improved IMs are compared with a conventional elastic-based scalar IMs (e.g., pseudo spectral acceleration, Sa ( T(¹)), or peak ground acceleration, PGA) and the advanced inelastic-based scalar IM (i.e., inelastic spectral displacement, Sdi). The advantages of applying improved IMs are: (i ) "computability" of the seismic hazard according to traditional Probabilistic Seismic Hazard Analysis (PSHA), because ground motion prediction models are already available for Sa (Ti), and hence it is possibile to employ existing models to assess hazard in terms of Sa,avg, and (ii ) "efficiency" or smaller variability of structural response, which was minimized to assess the optimal range to compute Sa,avg. More work is needed to assess also "sufficiency" and "scaling robustness" desirable properties, which are disregarded in this dissertation. However, for ordinary records (i.e., with no pulse like effects), using the improved IMs is found to be more accurate than using the elastic- and inelastic-based IMs. For structural demands that are dominated by the first mode of vibration, using Sa,avg can be negligible relative to the conventionally-used Sa (T(¹)) and the advanced Sdi. For structural demands with sign.cant higher-mode contribution, an improved scalar IM that incorporates higher modes needs to be utilized. In order to fully understand the influence of the IM on the seismis risk, a simplified closed-form expression for the probability of exceeding a limit state capacity was chosen as a reliability measure under seismic excitations and implemented for Reinforced Concrete (RC) frame structures. This closed-form expression is partuclarly useful for seismic assessment and design of structures, taking into account the uncertainty in the generic variables, structural "demand" and "capacity" as well as the uncertainty in seismic excitations. The assumed framework employs nonlinear Incremental Dynamic Analysis (IDA) procedures in order to estimate variability in the response of the structure (demand) to seismic excitations, conditioned to IM. The estimation of the seismic risk using the simplified closed-form expression is affected by IM, because the final seismic risk is not constant, but with the same order of magnitude. Possible reasons concern the non-linear model assumed, or the insufficiency of the selected IM. Since it is impossibile to state what is the "real" probability of exceeding a limit state looking the total risk, the only way is represented by the optimization of the desirable properties of an IM.
Resumo:
The electric utility business is an inherently dangerous area to work in with employees exposed to many potential hazards daily. One such hazard is an arc flash. An arc flash is a rapid release of energy, referred to as incident energy, caused by an electric arc. Due to the random nature and occurrence of an arc flash, one can only prepare and minimize the extent of harm to themself, other employees and damage to equipment due to such a violent event. Effective January 1, 2009 the National Electric Safety Code (NESC) requires that an arc-flash assessment be performed by companies whose employees work on or near energized equipment to determine the potential exposure to an electric arc. To comply with the NESC requirement, Minnesota Power’s (MP’s) current short circuit and relay coordination software package, ASPEN OneLinerTM and one of the first software packages to implement an arc-flash module, is used to conduct an arc-flash hazard analysis. At the same time, the package is benchmarked against equations provided in the IEEE Std. 1584-2002 and ultimately used to determine the incident energy levels on the MP transmission system. This report goes into the depth of the history of arc-flash hazards, analysis methods, both software and empirical derived equations, issues of concern with calculation methods and the work conducted at MP. This work also produced two offline software products to conduct and verify an offline arc-flash hazard analysis.
Resumo:
The reconstruction of past flash floods in ungauged basins leads to a high level of uncertainty, which increases if other processes are involved such as the transport of large wood material. An important flash flood occurred in 1997 in Venero Claro (Central Spain), causing significant economic losses. The wood material clogged bridge sections, raising the water level upstream. The aim of this study was to reconstruct this event, analysing the influence of woody debris transport on the flood hazard pattern. Because the reach in question was affected by backwater effects due to bridge clogging, using only high water mark or palaeostage indicators may overestimate discharges, and so other methods are required to estimate peak flows. Therefore, the peak discharge was estimated (123 ± 18 m3 s–1) using indirect methods, but one-dimensional hydraulic simulation was also used to validate these indirect estimates through an iterative process (127 ± 33 m3 s–1) and reconstruct the bridge obstruction to obtain the blockage ratio during the 1997 event (~48%) and the bridge clogging curves. Rainfall–Runoff modelling with stochastic simulation of different rainfall field configurations also helped to confirm that a peak discharge greater than 150 m3 s–1 is very unlikely to occur and that the estimated discharge range is consistent with the estimated rainfall amount (233 ± 27 mm). It was observed that the backwater effect due to the obstruction (water level ~7 m) made the 1997 flood (~35-year return period) equivalent to the 50-year flood. This allowed the equivalent return period to be defined as the recurrence interval of an event of specified magnitude, which, where large woody debris is present, is equivalent in water depth and extent of flooded area to a more extreme event of greater magnitude. These results highlight the need to include obstruction phenomena in flood hazard analysis.