928 resultados para finite-time blow-up
Resumo:
We argue that it is possible to adapt the approach of imposing restrictions on available plans through finitely effective debt constraints, introduced by Levine and Zame (1996), to encompass models with default and collateral. Along this line, we introduce in the setting of Araujo, Páscoa and Torres-Martínez (2002) and Páscoa and Seghir (2008) the concept of almost finite-time solvency. We show that the conditions imposed in these two papers to rule out Ponzi schemes implicitly restrict actions to be almost finite-time solvent. We define the notion of equilibrium with almost finite-time solvency and look on sufficient conditions for its existence. Assuming a mild assumption on default penalties, namely that agents are myopic with respect to default penalties, we prove that existence is guaranteed (and Ponzi schemes are ruled out) when actions are restricted to be almost finite-time solvent. The proof is very simple and intuitive. In particular, the main existence results in Araujo et al. (2002) and Páscoa and Seghir (2008) are simple corollaries of our existence result.
Resumo:
Esta dissertação é um estudo sobre o conto Las babas del diablo, de Julio Cortázar, e do filme Blow-Up, de Michelangelo Antonioni. Entre as inúmeras portas de entrada para abordar essas duas obras, optamos por explorá-las pelo caminho da fotografia, que é, a um só tempo, eixo temático ficcional do conto e do filme e também mola propulsora para um debate teórico sobre o fotográfico. Inserida em uma perspectiva comparatista, lançamos mão da intertextualidade e da interdisciplinaridade, conceitos fundamentais da Literatura Comparada. Nesse sentido, abordamos inicialmente as relações de produtividade entre os próprios textos e, depois, entre textos e imagens. Posteriormente, aproveitando uma proposta de Cortázar de comparar a fotografia com o conto, passamos a explorar a fotografia no seu âmbito teórico. Dois autores são basilares nesse ponto do trabalho: Roland Barthes e Philippe Dubois. O primeiro, na obra A câmara clara, coloca-se como mediador de toda análise sobre a fotografia, procedendo, dentro de uma perspectiva teórica, de forma semelhante aos personagens de Las babas del diablo e de Blow-Up, estes no mundo da ficção. Já Dubois, em O ato fotográfico, debate algumas das propostas de Barthes e faz um apanhado histórico bastante produtivo na medida em que aborda as três percepções da fotografia desde sua invenção até os dias atuais. Ao alçarmos a fotografia como mediadora teórica principal do corpus deste trabalho, realizamos um novo recorte, detendo-nos naqueles eixos levantados por Dubois e por Barthes que, na leitura de Las babas del diablo e de Blow-Up, nos pareceram exigir uma exploração mais produtiva. Nesse momento, estarão presentes questões relacionadas tanto à fotografia em si quanto às relações que ela estabelece com o fotógrafo e com aquele que a observa, sempre levando em conta as tentativas de tradução da imagem fotográfica para o texto e para o filme.
Resumo:
The behavior of uniformly accelerated detectors in the Minkowski and Rindler vacua is analyzed when the detector is coupled to a scalar field during a finite amount of time T. We point out that the logarithmic ultraviolet divergences reported in the literature are due to the instantaneous switching of the detector. We explicitly show this by considering a detector switched on and off continuously. The usual Planckian spectrum for the excitation probability is recovered in the limit T --> infinity.
Resumo:
Predictability is related to the uncertainty in the outcome of future events during the evolution of the state of a system. The cluster weighted modeling (CWM) is interpreted as a tool to detect such an uncertainty and used it in spatially distributed systems. As such, the simple prediction algorithm in conjunction with the CWM forms a powerful set of methods to relate predictability and dimension.
Resumo:
Forecasting, for obvious reasons, often become the most important goal to be achieved. For spatially extended systems (e.g. atmospheric system) where the local nonlinearities lead to the most unpredictable chaotic evolution, it is highly desirable to have a simple diagnostic tool to identify regions of predictable behaviour. In this paper, we discuss the use of the bred vector (BV) dimension, a recently introduced statistics, to identify the regimes where a finite time forecast is feasible. Using the tools from dynamical systems theory and Bayesian modelling, we show the finite time predictability in two-dimensional coupled map lattices in the regions of low BV dimension. © Indian Academy of Sciences.
Resumo:
This paper addresses the problem of finite-time synchronization of tunnel diode based chaotic oscillators. After a brief investigation of its chaotic dynamics, we propose an active adaptive feedback coupling which accomplishes the synchronization of tunnel-diode-based chaotic systems with and without the presence of delay(s), basing ourselves on Lyapunov and on Krasovskii-Lyapunov stability theories. This feedback coupling could be applied to many other chaotic systems. A finite horizon can be arbitrarily established by ensuring that chaos synchronization is achieved at a pre-established time. An advantage of the proposed feedback coupling is that it is simple and easy to implement. Both mathematical investigations and numerical simulations followed by PSPICE experiment are presented to show the feasibility of the proposed method.
Resumo:
A large deviations type approximation to the probability of ruin within a finite time for the compound Poisson risk process perturbed by diffusion is derived. This approximation is based on the saddlepoint method and generalizes the approximation for the non-perturbed risk process by Barndorff-Nielsen and Schmidli (Scand Actuar J 1995(2):169–186, 1995). An importance sampling approximation to this probability of ruin is also provided. Numerical illustrations assess the accuracy of the saddlepoint approximation using importance sampling as a benchmark. The relative deviations between saddlepoint approximation and importance sampling are very small, even for extremely small probabilities of ruin. The saddlepoint approximation is however substantially faster to compute.
Resumo:
Mode of access: Internet.
Resumo:
The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time. Some concrete examples of quasi-linear partial differential operators are proposed. Our results can also be applied in the framework of suitable nonlinear Volterra integro-differential equations.
Resumo:
The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time. Some concrete examples of quasi-linear partial differential operators are proposed. Our results can also be applied in the framework of suitable nonlinear Volterra integro-differential equations.