998 resultados para fine particle dose
Resumo:
Iron-platinum nanoparticles embedded in a poly(methacrylic acid) (PMA) polymer shell and fluorescently labeled with the dye ATTO 590 (FePt-PMA-ATTO-2%) are investigated in terms of their intracellular localization in lung cells and potential to induce a proinflammatory response dependent on concentration and incubation time. A gold core coated with the same polymer shell (Au-PMA-ATTO-2%) is also included. Using laser scanning and electron microscopy techniques, it is shown that the FePt-PMA-ATTO-2% particles penetrate all three types of cell investigated but to a higher extent in macrophages and dendritic cells than epithelial cells. In both cell types of the defense system but not in epithelial cells, a particle-dose-dependent increase of the cytokine tumor necrosis factor alpha (TNFalpha) is found. By comparing the different nanoparticles and the mere polymer shell, it is shown that the cores combined with the shells are responsible for the induction of proinflammatory effects and not the shells alone. It is concluded that the uptake behavior and the proinflammatory response upon particle exposure are dependent on the time, cell type, and cell culture.
Resumo:
Continuous condensation particle (CP) observations were conducted from 1984 through 2009 at Neumayer Station under stringent contamination control. During this period, the CP concentration (median 258 1/cm**3) showed no significant long term trend but exhibited a pronounced seasonality characterized by a stepwise increase starting in September and reaching its annual maximum of around 10**3/cm**3 in March. Minimum values below 10**2/cm**3 were observed during June/July. Dedicated time series analyses in the time and frequency domain revealed no significant correlations between inter-annual CP concentration variations and atmospheric circulation indices like Southern Annular Mode (SAM) or Southern Ocean Index (SOI). The impact of the Pinatubo volcanic eruption and strong El Niño events did not affect CP concentrations. From thermodenuder experiments we deduced that the portion of volatile (at 125 °C) and semi-volatile (at 250 °C) particles which could be both associated with biogenic sulfur aerosol, was maximum during austral summer, while during winter non-volatile sea salt particles dominated. During September through April we could frequently observe enhanced concentrations of ultrafine particles within the nucleation mode (between 3 nm and 7 nm particle diameter), preferentially in the afternoon.
Resumo:
Background: In recent years, Spain has implemented a number of air quality control measures that are expected to lead to a future reduction in fine particle concentrations and an ensuing positive impact on public health. Objectives: We aimed to assess the impact on mortality attributable to a reduction in fine particle levels in Spain in 2014 in relation to the estimated level for 2007. Methods: To estimate exposure, we constructed fine particle distribution models for Spain for 2007 (reference scenario) and 2014 (projected scenario) with a spatial resolution of 16x16 km2. In a second step, we used the concentration-response functions proposed by cohort studies carried out in Europe (European Study of Cohorts for Air Pollution Effects and Rome longitudinal cohort) and North America (American Cancer Society cohort, Harvard Six Cities study and Canadian national cohort) to calculate the number of attributable annual deaths corresponding to all causes, all non-accidental causes, ischemic heart disease and lung cancer among persons aged over 25 years (2005-2007 mortality rate data). We examined the effect of the Spanish demographic shift in our analysis using 2007 and 2012 population figures. Results: Our model suggested that there would be a mean overall reduction in fine particle levels of 1mg/m3 by 2014. Taking into account 2007 population data, between 8 and 15 all-cause deaths per 100,000 population could be postponed annually by the expected reduction in fine particle levels. For specific subgroups, estimates varied from 10 to 30 deaths for all non-accidental causes, from 1 to 5 for lung cancer, and from 2 to 6 for ischemic heart disease. The expected burden of preventable mortality would be even higher in the future due to the Spanish population growth. Taking into account the population older than 30 years in 2012, the absolute mortality impact estimate would increase approximately by 18%. Conclusions: Effective implementation of air quality measures in Spain, in a scenario with a short-term projection, would amount to an appreciable decline infine particle concentrations, and this, in turn, would lead to notable health-related benefits. Recent European cohort studies strengthen the evidence of an association between long-term exposure to fine particles and health effects, and could enhance the health impact quantification in Europe. Air quality models can contribute to improved assessment of air pollution health impact estimates, particularly in study areas without air pollution monitoring data.
Resumo:
The controlled co-delivery of multiple agents to the lung offers potential benefits to patients. This study investigated the preparation and characterisation of highly respirable spray-dried powders displaying the sustained release of two chemically distinct therapeutic agents. Spray-dried powders were produced from 30% (v/v) aqueous ethanol formulations that contained hydrophilic (terbutaline sulphate) and hydrophobic (beclometasone dipropionate) model drugs, chitosan (as a drug release modifier) and leucine (aerosolisation enhancer). The influence of chitosan molecular weight on spray-drying thermal efficiency, aerosol performance and drug release profile was investigated. Resultant powders were physically characterised: with in vitro aerosolisation performance and drug release profile investigated by the Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. It was found that increased chitosan molecular weight gave increased spray-drying thermal efficiency. The powders generated were of a suitable size for inhalation—with emitted doses over 90% and fine particle fractions up to 72% of the loaded dose. Sustained drug release profiles were observed in dissolution tests for both agents: increased chitosan molecular weight associated with increased duration of drug release. The controlled co-delivery of hydrophilic and hydrophobic entities underlines the capability of spray drying to produce respirable particles with sustained release for delivery to the lung. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study, we describe the preparation of highly dispersible dry powders for pulmonary drug delivery that display sustained drug release characteristics. Powders were prepared by spray-drying 30% v/v aqueous ethanol formulations containing terbutaline sulfate as a model drug, chitosan as a drug release modifier and leucine as an aerosolisation enhancer. The influence of chitosan molecular weight on the drug release profile was investigated by using low, medium and high molecular weight chitosan or combinations thereof. Following spray-drying, resultant powders were characterised using scanning electron microscopy, laser diffraction, tapped density analysis, differential scanning calorimetry and thermogravitational analysis. The in vitro aerosolisation performance and drug release profile were investigated using Multi-Stage Liquid Impinger analysis and modified USP II dissolution apparatus, respectively. The powders generated were of a suitable aerodynamic size for inhalation, had low moisture content and were amorphous in nature. The powders were highly dispersible, with emitted doses of over 90% and fine particle fractions of up to 82% of the total loaded dose, and mass median aerodynamic diameters of less than 2.5microm. A sustained drug release profile was observed during dissolution testing; increasing the molecular weight of the chitosan in the formulation increased the duration of drug release. (c)2007 Elsevier B.V. All rights reserved.
Resumo:
Increasingly complicated medication regimens associated with the necessity of the repeated dosing of multiple agents used in treating pulmonary disease has been shown to compromise both disease management and patient convenience. In this study the viability of spray drying to introduce controlled release vectors into dry powders for inhalation was investigated. The first experimental section highlights the use of leucine in producing highly respirable spray dried powders, with in vitro respirable fractions (Fine particle fraction, FPF: F < 5µm) exceeding 80% of the total dose. The second experimental chapter introduces the biocompatible polymer chitosan (mw 190 – 310 kDa) to formulations containing leucine with findings of increased FPF with increasing leucine concentration (up to 82%) and the prolonged release of the active markers terbulataline sulfate (up to 2 hours) and beclometasone dipropionate (BDP: up to 12 hours) with increasing chitosan molecular weight. Next, the thesis details the use of a double emulsion format in delivering the active markers salbutamol sulfate and BDP at differing rates; using the polymers poly-lactide co-glycolide (PLGA 50:50 and PLGA 75:25) and/or chitosan incorporating leucine as an aerosolisation enhancer the duration of in vitro release of both agents reaching 19 days with FPF exceeding 60%. The final experimental chapter involves dual aqueous and organic closed loop spray drying to create controlled release dry powders for inhalation with in vitro sustained release exceeding 28 days and FPF surpassing 55% of total loaded dose. In conclusion, potentially highly respirable sustained release dry powders for inhalation have been produced by this research using the polymers chitosan and/or PLGA as drug release modifiers and leucine as an aerosolisation enhancer.
Resumo:
Spray-drying is an effective process for preparing micron-dimensioned particles for pulmonary delivery. Previously, we have demonstrated enhanced dispersibility and fine particle fraction of spray-dried nonviral gene delivery formulations using amino acids or absorption enhancers as dispersibility-enhancing excipients. In this study, we investigate the use of the cationic polymer chitosan as a readily available and biocompatible dispersibility enhancer. Lactose-lipid:polycation:pDNA (LPD) powders were prepared by spray-drying and post-mixed with chitosan or spray-dried chitosan. In addition, the water-soluble chitosan derivative, trimethyl chitosan, was added to the lactose-LPD formulation before spray-drying. Spray-dried chitosan particles, displaying an irregular surface morphology and diameter of less than 2 mu m, readily adsorbed to lactose-LPD particles following mixing. In contrast with the smooth spherical surface of lactose-LPD particles, spray-dried trimethyl chitosan-lactose-LPD particles demonstrated increased surface roughness and a unimodal particle size distribution (mean diameter 3.4 mu m), compared with the multimodal distribution for unmodified lactose-LPD powders (mean diameter 23.7 mu m). The emitted dose and in vitro deposition of chitosan-modified powders was significantly greater than that of unmodified powders. Moreover, the inclusion of chitosan mediated an enhanced level of reporter gene expression. In summary, chitosan enhances the dispersibility and in vitro pulmonary deposition performance of spray-dried powders.
Resumo:
In this paper, we demonstrate that co-spray-drying a model protein with sodium carboxymethylcellulose (NaCMC) protects protein integrity during spray-drying, and that the resultant spray-dried powders can be successfully dispersed in hydrofluoroalkane (HFA) propellant to prepare pressurised metered dose (pMDI) formulations that exhibit high respirable fractions. The spray-dried powders were formulated as HFA-134a pMDI suspensions in the absence of any other excipients (e.g. surfactants) or co-solvents (e.g. ethanol). The in vitro aerosolisation profile of these systems was assessed using the twin stage impinger; fine particle fractions (FPF) ≥50% of the recovered dose were obtained. Following storage for five months, the aerosolisation performance was reassessed; the NaCMC-free formulation demonstrated a significant decrease in FPF, whereas the performance of the NaCMC-modified formulations was statistically equivalent to their initial performance. Thus, formulation of pMDI suspensions using NaCMC-based spray-dried powders is a promising approach for the pulmonary delivery of proteins and peptides. © 2009 Elsevier B.V. All rights reserved.
Resumo:
The sustained delivery of multiple agents to the lung offers potential benefits to patients. This study explores the preparation of highly respirable dual-loaded spray-dried double emulsions. Spray-dried powders were produced from water-in-oil-in-water (w/o/w) double emulsions, containing salbutamol sulphate and/or beclometasone dipropionate in varying phases. The double emulsions contained the drug release modifier polylactide co-glycolide (PLGA 50 : 50) in the intermediate organic phase of the original micro-emulsion and low molecular weight chitosan (Mw<190 kDa: emulsion stabilizer) and leucine (aerosolization enhancer) in the tertiary aqueous phase. Following spray-drying resultant powders were physically characterized: with in vitro aerosolization performance and drug release investigated using a Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. Powders generated were of a respirable size exhibiting emitted doses of over 95% and fine particle fractions of up to 60% of the total loaded dose. Sustained drug release profiles were observed during dissolution for powders containing agents in the primary aqueous and secondary organic phases of the original micro-emulsion; the burst release of agents was witnessed from the tertiary aqueous phase. The novel spray-dried emulsions from this study would be expected to deposit and display sustained release character in the lung.
Resumo:
The use of sodium carboxymethylcellulose (NaCMC) as a spray-drying excipient in the preparation of inhalable formulations of proteins was investigated, using alkaline phosphatase as a model functional protein. Two spray-dried powders were investigated: a control powder comprising 100% (w/w) alkaline phosphatase and a test powder comprising 67% (w/w) NaCMC and 33% (w/w) alkaline phosphatase. Following physicochemical characterisation, the powders were prepared as both dry powder inhaler (DPI) and pressurised metered dose inhaler (pMDI) formulations. The aerosolisation performance of the formulations was assessed using a Multi-Stage Liquid Impinger, both immediately after preparation and over a 16-week storage period. Formulating the control powder as a DPI resulted in a poor fine particle fraction (FPF: 10%), whereas the FPF of the NaCMC-modified DPI formulation was significantly greater (47%). When the powders were formulated as pMDI systems, the control and NaCMC-modified powders demonstrated FPFs of 52% and 55%, respectively. Following storage, reduced FPF was observed for all formulations except the NaCMC-modified pMDI system; the performance of this formulation following storage was statistically equivalent to that immediately following preparation. Co-spray-drying proteins and peptides with NaCMC may therefore offer an alternative method for the preparation of stable and respirable pMDI formulations for pulmonary delivery. © 2010 Elsevier B.V.
Resumo:
Airborne particulate matter (PM) is of environmental concern not only in urban but also rural areas that are easily inhalable and have been considered responsible, together with gaseous pollutants, for possible health effects. The objectives of this research study is to generate an extensive data set for ambient PM collected at Belle Glade and Delray Beach that ultimately was used together with published source profiles to predict the contributions of major sources to the overall airborne particle burden in Belle Glade and Delray Beach. ^ The size segregated particle sampling was conducted for one entire year. The samples collected during the months of January and May were further subjected to chemical analysis for organic compounds by Gas Chromatography-Mass Spectrometry. Additional, PM10 sampling was conducted simultaneously with size segregated particle sampling during January and May to analyze for trace elements using Instrumental Neutron Activation Analysis technique. Elements and organic marker compounds were used in Chemical Mass Balance modeling to determine the major source contribution to the ambient fine particle matter burden. ^ Size segregated particle distribution results show bimodal in both sampling sites. Sugarcane pre-harvest burning in the rural site elevated PM10 concentration by about 30% during the sugarcane harvest season compared to sugarcane growing season. Sea salt particles and Saharan dust particles accounted for the external sources. ^ The results of trace element analysis show that Al, Ca, Cs, Eu, Lu, Nd, Sc, Sm, Th, and Yb are more abundant at the rural sampling site. The trace elements Ba, Br, Ce, Cl, Cr, Fe, Gd, Hf, Na, Sb, Ta, V, and W show high abundance at the urban site due to anthropogenic activities except for Na and Cl, which are from sea salt spray. On the other hand, size segregated trace organic compounds measurements show that organic compounds mainly from combustion process were accumulated in PM0.95. ^ In conclusion, major particle sources were determined by the CMB8.2 software as follows: road dust, sugarcane leaf burning, diesel-powered and gasoline powered vehicle exhaust, leaf surface abrasion particles, and a very small fraction of meat cooking. ^
Resumo:
To explore the hypothesis that air pollution promotes cardiovascular changes, Swiss mice were continuously exposed, since birth, in two open-top chambers (filtered and nonfiltered for airborne particles <= 0.3 mu m) placed 20 m from a street with heavy traffic in downtown Sao Paulo, twenty-four hours per day for four months. Fine particle (PM(2.5)) concentration was determined gravimetrically; hearts were analyzed by morphometry. There was a reduction of the PM(2.5) inside the filtered chamber (filtered = 8.61 +/- 0.79 mu g/m(3), nonfiltered = 18.05 +/- 1.25 mu g/m(3), p < .001). Coronary arteries showed no evidence of luminal narrowing in the exposed group but presented higher collagen content in the adventitia of LV large-sized and RV midsized vessels (p = .001) and elastic fibers in both tunicae adventitia and intima-media of almost all sized arterioles from both ventricles (p = .03 and p = .001, respectively). We concluded that chronic exposure to urban air since birth induces mild but significant vascular structural alterations in normal individuals, presented as coronary arteriolar fibrosis and elastosis. These results might contribute to altered vascular response and ischemic events in the adulthood.
Resumo:
A more efficient classifying cyclone (CC) for fine particle classification has been developed in recent years at the JKMRC. The novel CC, known as the JKCC, has modified profiles of the cyclone body, vortex finder, and spigot when compared to conventional hydrocyclones. The novel design increases the centrifugal force inside the cyclone and mitigates the short circuiting flow that exists in all current cyclones. It also decreases the probability of particle contamination in the place near the cyclone spigot. Consequently the cyclone efficiency is improved while the unit maintains a simple structure. An international patent has been granted for this novel cyclone design. In the first development stage-a feasibility study-a 100 mm JKCC was tested and compared with two 100 min commercial units. Very encouraging results were achieved, indicating good potential for the novel design. In the second development stage-a scale-up stage-the JKCC was scaled up to 200 mm in diameter, and its geometry was optimized through numerous tests. The performance of the JKCC was compared with a 150 nun commercial unit and exhibited sharper separation, finer separation size, and lower flow ratios. The JKCC is now being scaled up into a fill-size (480 mm) hydrocyclone in the third development stage-an industrial study. The 480 mm diameter unit will be tested in an Australian coal preparation plant, and directly compared with a commercial CC operating under the same conditions. Classifying cyclone performance for fine coal could be further improved if the unit is installed in an inclined position. The study using the 200 mm JKCC has revealed that sharpness of separation improved and the flow ratio to underflow was decreased by 43% as the cyclone inclination was varied from the vertical position (0degrees) to the horizontal position (90degrees). The separation size was not affected, although the feed rate was slightly decreased. To ensure self-emptying upon shutdown, it is recommended that the JKCC be installed at an inclination of 75-80degrees. At this angle the cyclone performance is very similar to that at a horizontal position. Similar findings have been derived from the testing of a conventional hydrocyclone. This may be of benefit to operations that require improved performance from their classifying cyclones in terms of sharpness of separation and flow ratio, while tolerating slightly reduced feed rate.
Resumo:
This study explores a large set of OC and EC measurements in PM(10) and PM(2.5) aerosol samples, undertaken with a long term constant analytical methodology, to evaluate the capability of the OC/EC minimum ratio to represent the ratio between the OC and EC aerosol components resulting from fossil fuel combustion (OC(ff)/EC(ff)). The data set covers a wide geographical area in Europe, but with a particular focus upon Portugal, Spain and the United Kingdom, and includes a great variety of sites: urban (background, kerbside and tunnel), industrial, rural and remote. The highest minimum ratios were found in samples from remote and rural sites. Urban background sites have shown spatially and temporally consistent minimum ratios, of around 1.0 for PM(10) and 0.7 for PM(2.5).The consistency of results has suggested that the method could be used as a tool to derive the ratio between OC and EC from fossil fuel combustion and consequently to differentiate OC from primary and secondary sources. To explore this capability, OC and EC measurements were performed in a busy roadway tunnel in central Lisbon. The OC/EC ratio, which reflected the composition of vehicle combustion emissions, was in the range of 03-0.4. Ratios of OC/EC in roadside increment air (roadside minus urban background) in Birmingham, UK also lie within the range 03-0.4. Additional measurements were performed under heavy traffic conditions at two double kerbside sites located in the centre of Lisbon and Madrid. The OC/EC minimum ratios observed at both sites were found to be between those of the tunnel and those of urban background air, suggesting that minimum values commonly obtained for this parameter in open urban atmospheres over-predict the direct emissions of OC(ff) from road transport. Possible reasons for this discrepancy are explored. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica