55 resultados para ferricyanide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly ordered mesoporous carbon (MC) has been synthesized from sucrose, a non-toxic and costeffective source of carbon. X-ray diffraction, N2 adsorption–desorption isotherm and transmission electron micrograph (TEM) were used to characterize the MC. The XRD patterns show the formation of highly ordered mesoporous structures of SBA15 and mesoporous carbon. The N2 adsorptiondesorption isotherms suggest that the MC exhibits a narrow pore-size distribution with high surface area of 1559 m2/g. The potential application of MC as a novel electrode material was investigated using cyclic voltammetry for riboflavin (vitamin B2) and dopamine. MC-modified glassy carbon electrode (MC/GC) shows increase in peak current compared to GC electrode in potassium ferricyanide which clearly suggest that MC/GC possesses larger electrode area (1.8 fold) compared with bare GC electrode. The electrocatalytic behavior of MC/GC was investigated towards the oxidation of riboflavin (vitamin B2) and dopamine using cyclic voltammetry which show larger oxidation current compared to unmodified electrode and thus MC/GC may have the potential to be used as a chemically modified electrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple three step procedure was used to purify microsomal NADH-cytochrome b5 (ferricyanide) reductase to homogeneity from the higher plant C. roseus. The microsomal bound reductase was solubilized using zwitterionic detergent-CHAPS. The solubilized reductase was subjected to affinity chromatography on octylamino Sepharose 4B, blue 2-Sepharose CL-6B and NAD+-Agarose. The homogeneous enzyme has an apparent molecular weight of 33,000 as estimated by SDS-PAGE. The purified enzyme catalyzes the reduction of purified cytochrome b5 from C. roseus in the presence of NADH. The reductase also readily transfers electrons from NADH to ferricyanide (Km 56 μM), 2,6-dichlorophenolindophenol (Km 65 μM) and cytochrome Image via cytochrome b5 but not to menadione.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Redox reactions which occur at positive potentials such as ferrous/ferric, hydroquinone/quinone, ferrocyanide/ferricyanide etc. in aqueous acidic electrolytes cannot be studied on non-platinum metals, for example, a Ni electrode. On the contrary, these reactions occur on polyaniline (PANI) modified Ni electrodes, as evidenced from cyclic voltammetry, amperometry and steady-state polarization experiments. Under identical experimental conditions of scan rate (v) and concentration (C), the peak current density (i(p)) values of Fe2+/Fe3+ redox reaction are greater on the PANI modified Ni than on Pt. Additionally, the peak potential separation (DeltaE(p)) of the voltammogram is lesser on the PANI modified Ni. With an increase in thickness of the PANI, DeltaE(p) increases suggesting that the redox reactions tend to depart from the reversibility. Scanning electron micrographs reveal the presence of a crystalline deposit of PANI on Ni when the thickness of PANI is about 0.08 mum. However, the PANI becomes amorphous and porous at higher thickness values. Raman spectroscopy and X-ray diffraction studies corroborate the observations made out of scanning electron microscopy. Higher catalytic activity of PANI is attributed to crystalline nature of PANI on Ni. Exchange current density and standard rate constant of Fe2+/Fe(3+)redox reaction are evaluated. (C) 2002 Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene's nano-dimensional nature and excellent electron transfer properties underlie its electrocatalytic behavior towards certain substances. In this light, we have used graphene in the electrochemical detection of bisphenol A. Graphene sheets were produced via soft chemistry route involving graphite oxidation and chemical reduction. X-ray diffraction, Fourier transform infra-red (FT-IR) and Raman spectroscopy were used for the characterization of the as-synthesized graphene. Graphene exhibited amorphous structure in comparison with pristine graphite from XRD spectra. FTIR showed that graphene exhibits OH and COOH groups due to incomplete reduction. Raman spectroscopy revealed that multi-layered graphene was produced due to low intensity of the 2D-peak. Glassy carbon electrode was modified with graphene by a simple drop and dry method. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. The prepared graphene- modified glassy carbon electrode exhibited more facile electron kinetics and enhanced current of about 75% when compared to the unmodified glassy carbon electrode. The modified electrode was used for the detection of bisphenol A. Under the optimum conditions, the oxidation peak current of bisphenol A varied linearly with concentration over a wide range of 5 x 10(-8) mol L-1 to 1 x 10(-6) mol L-1 and the detection limit of this method was as low as 4.689 x 10(-8) M. This method was also employed to determine bisphenol A in a real sample

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the pH and temperature dependence of the redox potentials of azurins from five species of bacteria has been performed. The variations in the potentials with pH have been interpreted in terms of electrostatic interactions between the copper site and titrating histidine residues, including the effects of substitutions in the amino acid sequences of the proteins on the electrostatic interactions. A comparison of the observed pH dependences with predictions based on histidine pK_a values known for Pseudomonas aeruginosa (Pae), Alcaligenes denitrificans (Ade), and Alcaligenes faecalis (Afa) azurins indicates that the Pae and Ade redox potentials exhibit pH dependences in line with electrostatic arguments, while Afa azurin exhibits more complex behavior. Redox enthalpies and entropies for four of the azurins at low and high pH values have also been obtained. Based on these results in conjuction with the variable pH experiments, it appears that Bordetella bronchiseptica azurin may undergo a more substantial conformational change with pH than has been observed for other species of azurin.

The temperature dependence of the redox potential of bovine erythrocyte superoxide dismutase (SOD) has been determined at pH 7.0, with potassium ferricyanide as the mediator. The following thermodynamic parameters have been obtained (T = 25°C): E°' = 403±5 mV vs. NHE, ΔG°' = -9.31 kcal/mol, ΔH°' = -21.4 kcal/mol, ΔS°' = -40.7 eu, ΔS°'_(rc) = -25.1 eu. It is apparent from these results that ΔH°', rather than ΔS°', is the dominant factor in establishing the high redox potential of SOD. The large negative enthalpy of reduction may also reflect the factors which give SOD its high specificity toward reduction and oxidation by superoxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyethylenimine (PEI)-protected Prussian blue nanocubes have been simply synthesized by heating an acidic mixture of PEI, FeCl3, K3Fe(CN)(6), and KCI. The experiment results presented here demonstrate that the pH of the mixture plays an important role in controlling the shape and composition of the resultant product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the fabrication of an efficient amperometric hydrogen peroxide sensor with favorable properties is presented. Prussian blue (PB) was catalytically synthesized by Pt nanoparticles (Pt-nano) from ferric ferricyanide aqueous solution to form PB@Pt-nano hybrid, and it was confirmed by transmission electron microscope (TEM) and optical spectra. The electrochemical behavior of PB@Pt-nano was highly improved through its integration with poly(diallyldimethylammonium chloride) modified carbon nanotubes (PCNTs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the characterization and application of a chemically reduced graphene oxide modified glassy carbon (CR-GO/GC) electrode, a novel electrode system, for the preparation of electrochemical sensing and biosensing platform are proposed. Different kinds of important inorganic and organic electroactive compounds (i.e., probe molecule (potassium ferricyanide), free bases of DNA (guanine (G), adenine (A), thymine (T), and cytosine (C)), oxidase/dehydrogenase-related molecules (hydrogen peroxide (H2O2/beta-nicotinamide adenine dinucleotide (NADH)), neurotransmitters (dopamine (DA)), and other biological molecules (ascorbic acid (AA), uric acid (UA), and acetaminophen (APAP)) were employed to study their electrochemical responses at the CR-GO/GC electrode, which shows more favorable electron transfer kinetics than graphite modified glassy carbon (graphite/GC) and glassy carbon (GC) electrodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical measurement of respiratory chain activity is a rapid and reliable screening for the toxicity on microorganisms. Here, we investigated in-vitro effects of toxin on Escherichia coli (E. coli) that was taken as a model microorganism incubated with ferricyanide. The current signal of ferrocyanide effectively amplified by ultramicroelectrode array (UMEA), which was proven to be directly related to the toxicity. Accordingly, a direct toxicity assessment (DTA) based on chronoamperometry was proposed to detect the effect of toxic chemicals on microorganisms. The electrochemical responses to 3,5-dichlorophenol (DCP) under the incubation times revealed that the toxicity reached a stable level at 60 min, and its 50% inhibiting concentration (IC50) was estimated to be 8.0 mg L-1. At 60 min incubation, the IC50 values for KCN and As2O3 in water samples were 4.9 mg L-1 and 18.3 mg L-1, respectively. But the heavy metal ions, such as Cu2+ Pb2+ and Ni2+, showed no obvious toxicity on E. coli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a simple, efficient, economical, and general approach to construct diverse multifunctional Fe3O4/metal hybrid nanostructures displaying magnetization using 3-aminopropyltrimethoxysilane (APTMS) as a linker. High-density Au nanoparticles (NPs) could be supported on the surface of superparamagnetic Fe3O4 spheres and used as seeds to construct Au shell-coated magnetic spheres displaying near-infrared (NIR) absorption., which may make them promising in biosensor and biomedicine applications. High-density flower-like Au/Pt hybrid NPs could be supported on the surface of Fe3O4 spheres to construct multifunctional hybrid spheres with high catalytic activity towards the electron-transfer reaction between potassium ferricyanide and sodium thiosulfate. High-density Ag or Au/Ag core/shell NPs could also be supported on the surface of Fe3O4 spheres and exhibited pronounced surface-enhanced Raman scattering (SERS), which may possibly be used as an optical probe with magnetic function for application in high-sensitivity bioassays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rotating minidisk-disk electrode (RMDDE) was developed by replacing ring electrode of rotating ring-disk electrode (RRDE) with a minidisk electrode. Its applications were demonstrated by studying electrochemical reactions of ferricyanide and divalent copper. The replacement of ring electrode by minidisk electrode results in following advantages. First, the fabrication of RMDDE is easier than that of RRDE with the same electrode material. Second, there is more freedom in choosing electrode materials and sizes, since it is difficult to make thin ring electrodes of RRDE with fragile materials. Third, the replacement of ring electrode by minidisk electrode saves electrode materials, especially rare materials. Finally, the substitution of minidisk electrode for ring electrode allows using multiple minidisks for simultaneous monitoring of multiple components. Therefore, RMDDE is a promising generator-collector system, especially when special generator-collector systems are not commercially available, such as corrosion study and electrocatalysis study of new electrode materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical functionalization of single-walled carbon nanotubes (SWNTs) has constructed plenty of new structures with ample new properties into them. But the modification was often confined to organic molecules, either by covalence or non-covalence. In this report, SWNTs were successfully functionalized with one kind of electroactive inorganic compounds: Prussian blue (PB). And the molecular interactions between them were firstly investigated. Interestedly, pi-pi stacking interaction coupled with ionic interaction was found between SWNTs and PB. The electrochemical properties of SWNTs-PB were also investigated. It would pave a new pathway to manipulate molecular entities of SWNTs by cooperation with functional inorganic electroactive compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM) is employed to investigate the effect of solution viscosity on the rate constants of electron transfer (ET) reaction between potassium ferricyanide in water and 7,7,8,8-tetracyanoquinodimethane (TCNQ) in 1,2-dichloroethane. Either tetrabutylammonium (TBA(+)) or ClO4- is chosen as the common ion in both phases to control the interfacial potential drop. The rate constant of heterogeneous ET reaction between TCNQ and ferrocyanide produced in-situ, k(12), is evaluated by SECM and is inversely proportional to the viscosity of the aqueous solution and directly proportional to the diffusion coefficient of K4Fe(CN)(6) in water when the concentration of TCNQ in the DCE phase is in excess. The k(12) dependence on viscosity is explained in terms of the longitudinal relaxation time of the solution. The rate constant of the heterogeneous ET reaction between TCNQ and ferricyanide, k(21), is also obtained by SECM and these results cannot be explained by the same manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing very hydrophobic electrolyte. Combined with reference and counter electrodes, a classical three-electrode system has been constructed, Ion transfer (IT) and electron transfer (ET) are investigated systematically using three-electrode voltammetry. Potassium ion transfer and electron transfer between potassium ferricyanide in the aqueous phase and ferrocene in nitrobenzene are observed with potassium ferricyanide/potassium ferrocyanide as the redox couple. Meanwhile, the transfer reactions of lithium, sodium, potassium, proton and ammonium ions are obtained with ferric sulfate/ferrous sulfate as the redox couple. The formal transfer potentials and the standard Gibbs transfer energy of these ions are evaluated and consistent with the results obtained by a four-electrode system and other methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we report the findings of a study on scanning electrochemical microscopy (SECM) to investigate the interfacial electron-transfer (ET) reaction between the 7,7,8,8-tetracyanoquinodimethane radical anion (TCNQ(.-)) in 1,2-dichloroethane and ferricyanide in an ice-like matrix (a mixture of insulting ice and conductive liquid) under low temperatures. Experimental results indicate that the formed liquid/ice-like matrix interface is superficially similar in electrochemical characteristics to a liquid/liquid interface at temperatures above -20 degreesC. Furthermore, imaging data show that the surface of the ice-like matrix is microscopically flat and physically stable and can be applied as either a conductive or an insulting substrate for SECM studies. Perchlorate ion was selected as the common ion in both phases, the concentrations of which controlled the interfacial potential difference. The effect of perchlorate concentration in the DCE phase on interfacial reactions has been studied in detail. The apparent heterogeneous rate constants for TCNQ(.-) oxidation by Fe(CN)(6)(3-) in another phase under different temperatures have been calculated by a best-fit analysis, where the experimental approach curves are compared with the theoretically derived relationships. Reaction rate data obey Butler-Volmer formulation before and after the freezing point, which is similar to most other known cases of ET reactions at liquid/liquid interfaces. However, there is a sharp change observed for heterogeneous rate constants around the freezing point of the aqueous phase, which reflects the phase transition. At temperatures below -20 degreesC, surface-confined voltammograms for the reduction of ferricyanide were obtained, and the ice-like matrix became an insulating one, which indicates that the aqueous phase is really a frozen phase.