833 resultados para fatty acid binding protein
Resumo:
Molecular cloning of components of protective antigenic preparations has suggested that related parasite fatty acid-binding proteins could form the basis of the protective immune crossreactivity between the parasitic trematode worms Fasciola hepatica and Schistosoma mansoni. Molecular models of the two parasite proteins showed that both molecules adopt the same basic three-dimensional structure, consisting of a barrel-shaped molecule formed by 10 antiparallel beta-pleated strands joined by short loops, and revealed the likely presence of crossreactive, discontinuous epitopes principally derived from amino acids in the C-terminal portions of the molecules. A recombinant form of the S. mansoni antigen, rSm14, protected outbred Swiss mice by up to 67% against challenge with S. mansoni cercariae in the absence of adjuvant and without provoking any observable autoimmune response. The same antigen also provided complete protection against challenge with F. hepatica metacercariae in the same animal model. The results suggest that it may be possible to produce a single vaccine that would be effective against at least two parasites, F. hepatica and S. mansoni, of veterinary and human importance, respectively.
Resumo:
To explore the relationship between mitochondrial aspartate aminotransferase (mAspAT; EC 2.6.1.1) and plasma membrane fatty acid-binding protein (FABPpm) and their role in cellular fatty acid uptake, 3T3 fibroblasts were cotransfected with plasmid pMAAT2, containing a full-length mAspAT cDNA downstream of a Zn(2+)-inducible metallothionein promoter, and pFR400, which conveys methotrexate resistance. Transfectants were selected in methotrexate, cloned, and exposed to increasing methotrexate concentrations to induce gene amplification. Stably transfected clones were characterized by Southern blotting; those with highest copy numbers of pFR400 alone (pFR400) or pFR400 and pMAAT2 (pFR400/pMAAT2) were expanded for further study. [3H]Oleate uptake was measured in medium containing 500 microM bovine serum albumin and 125-1000 microM total oleate (unbound oleate, 18-420 nM) and consisted of saturable and nonsaturable components. pFR400/pMAAT2 cells exhibited no increase in the rate constant for nonsaturable oleate uptake or in the uptake rate of [14C]octanoate under any conditions. By contrast, Vmax (fmol/sec per 50,000 cells) of the saturable oleate uptake component increased 3.5-fold in pFR400/pMAAT2 cells compared to pFR400, with a further 3.2-fold increase in the presence of Zn2+. Zn2+ had no effect in pFR400 controls (P > 0.5). The overall increase in Vmax between pFR400 and pFR400/pMAAT2 in the presence of Zn2+ was 10.4-fold (P < 0.01) and was highly correlated (r = 0.99) with expression of FABPpm in plasma membranes as determined by Western blotting. Neither untransfected 3T3 nor pFR400 cells expressed cell surface FABPpm detectable by immunofluorescence. By contrast, plasma membrane immunofluorescence was detected in pFR400/pMAAT2 cells, especially if cultured in 100 microM Zn2+. The data support the dual hypotheses that mAspAT and FABPpm are identical and mediate saturable long-chain free fatty acid uptake.
Resumo:
A sequence of epithelial cell proliferation, allocation to four principal lineages, migration-associated differentiation, and cell loss occurs along the crypt-villus axis of the mouse intestine. The sequence is completed in a few days and is recapitulated throughout the life-span of the animal. We have used an intestine-specific fatty acid binding protein gene, Fabpi, as a model for studying regulation of gene expression in this unique developmental system. Promoter mapping studies in transgenic mice identified a 20-bp cis-acting element (5'-AGGTGGAAGCCATCACACTT-3') that binds small intestinal nuclear proteins and participates in the control of Fabpi's cephalocaudal, differentiation-dependent, and cell lineage-specific patterns of expression. Immunocytochemical studies using confocal and electron microscopy indicate that it does so by acting as a suppressor of gene expression in the distal small intestine/colon, as a suppressor of gene activation in proliferating and nonproliferating cells located in the crypts of Lieberkühn, and as a suppressor of expression in the growth factor and defensin-producing Paneth cell lineage. The 20-bp domain has no obvious sequence similarities to known transcription factor binding sites. The three functions modulated by this compact element represent the types of functions required to establish and maintain the intestine's remarkably complex spatial patterns of gene expression. The transgenes described in this report also appear to be useful in characterizing the crypt's stem cell hierarchy.
Resumo:
Nonalcoholic fatty liver disease is the most common of all liver diseases. The hepatic disposition [H-3]palmitate and its low-molecular-weight metabolites in perfused normal and steatotic rat liver were studied using the multiple indicator dilution technique and a physiologically based slow diffusion/bound pharmacokinetic model. The steatotic rat model was established by administration of 17alpha-ethynylestradiol to female Wistar rats. Serum biochemistry markers and histology of treated and normal animals were assessed and indicated the presence of steatosis in the treatment group. The steatotic group showed a significantly higher alanine aminotransferase-to-aspartate aminotransferase ratio, lower levels of liver fatty acid binding protein and cytochrome P-450, as well as microvesicular steatosis with an enlargement of sinusoidal space. Hepatic extraction for unchanged [H-3]palmitate and production of low-molecular-weight metabolites were found to be significantly decreased in steatotic animals. Pharmacokinetic analysis suggested that the reduced extraction and sequestration for palmitate and its metabolites was mainly attributed to a reduction in liver fatty acid binding protein in steatosis.
Resumo:
Objective: To examine the association between fatty acid binding protein 4 (FABP4) and pre-eclampsia risk in women with type 1 diabetes.
Reesearch Design and Methods: Serum FABP4 was measured in 710 women from the Diabetes and Pre-eclampsia Intervention Trial (DAPIT) in early pregnancy and in the second trimester (median 14 and 26 weeks gestation, respectively).
Results: FABP4 was significantly elevated in early pregnancy (geometric mean 15.8 ng/mL [interquartile range 11.6–21.4] vs. 12.7 ng/mL [interquartile range 9.6–17]; P < 0.001) and the second trimester (18.8 ng/mL [interquartile range 13.6–25.8] vs. 14.6 ng/mL [interquartile range 10.8–19.7]; P < 0.001) in women in whom pre-eclampsia later developed. Elevated second-trimester FABP4 level was independently associated with pre-eclampsia (odds ratio 2.87 [95% CI 1.24, 6.68], P = 0.03). The addition of FABP4 to established risk factors significantly improved net reclassification improvement at both time points and integrated discrimination improvement in the second trimester.
Conclusions: Increased second-trimester FABP4 independently predicted pre-eclampsia and significantly improved reclassification and discrimination. FABP4 shows potential as a novel biomarker for pre-eclampsia prediction in women with type 1 diabetes.
Resumo:
The crystal structure of dimeric Lys49-phospholipase A2 myotoxin-II from Bothrops moojeni (MjTX-II) co-crystallized with stearic acid (C18H36O2) has been determined at a resolution of 1.8 angstrom. The electron density maps permitted the unambiguous inclusion of six stearic acid molecules in the refinement. Two stearic acid molecules could be located in the substrate-binding cleft of each monomer in positions, which favor the interaction of their carboxyl groups with active site residues. The way of binding of stearic acids to this Lys49-PLA(2)s is analogous to phospholipids and transition state analogues to catalytically active PLA(2)s. Two additional stearic acid molecules were located at the dimer interface region, defining a hitherto unidentified acyl-binding site on the protein surface. The strictly conserved Lys122 for Lys49-PLA(2)s may play a fundamental role for stabilization of legend-protein complex. The comparison of MjTX-II/satiric acid complex with other Lys-PLA(2)s structures whose putative fatty acids were located at their active site is also analysed. Molecular details of the stearic acid/protein interactions provide insights to binding in croup I/II PLA(2)s and to the possible interactions of Lys49-PLA(2)s with target membranes. (c) 2004 Elsevier SAS. All rights reserved.
Resumo:
We sequenced cDNAs coding for chicken cellular nucleic acid binding protein (CNBP). Two slightly different variations of the open reading frame were found, each of which translates into a protein with seven zinc finger domains. The longest transcript contains an in-frame insert of 3 bp. The sequence conservation between chick CNBP cDNAs with human, rat and mouse CNBP cDNAs is extreme, especially in the coding region, where the deduced amino acid sequence identity with human, rat and mouse CNBP is 99%. CNBP-like transcripts were also found in various tissues from insect, shrimp, fish and lizard. Regions with remarkable nucleotide conservation were also found in the 3' untranslated region, indicating important functions for these regions. Quantitative reverse transcription polymerase chain reaction (RT-PCR) indicated that in the chick, CNBP is present in all tissues examined in approximately equal ratios to total RNA. RT-PCR of total RNA isolated from different phyla indicate CNBP-like proteins art widespread throughout the animal kingdom. The extraordinary level of conservation suggests an important physiological role for CNBP. (C) 1997 Elsevier Science Inc.
Resumo:
Most meningiomas are benign tumours of arachnoidal origin, although a small number have high proliferative rates and invasive properties which complicate complete surgical resection and are associated with increased recurrence rates. Few prognostic indicators exist for meningiomas and further research is necessary to identify factors that influence tumour invasion, oedema and recurrence. Paraffin sections from 25 intracranial meningiomas were analysed for expression of the proteins vascular endothelial growth factor (VEGF), VEGF receptors Flt1 and Flk1, E-cadherin, metalloproteinases 2 and 9 (MMP2, MMP9), CD44, receptor for hyaluronic acid-mediated motility (RHAMM), hyaluronic acid (HA), CD45, cyclooxygenase 2 (COX2), brain fatty acid binding protein (BFABP), Ki67, and proliferating cell nuclear antigen (PCNA). Correlations among protein expression were found for several markers of proliferation (Ki67, PCNA, MI) and microvessel density (MVD). COX2 expression increased with increasing with tumour grade and correlated with Ki67, PCNA, MI, MVD, and BFABP. BFABP expression also correlated with Ki67 and PCNA expression. Relationships were also identified among angiogenic factors (VEGF, Flt1, Flk1) and proliferation markers. Oedema was found to correlate with MMP9 expression and MMP9 also correlated with proliferation markers. No correlations were found for MMP2, E-cadherin, or CD44 in meningiomas. In conclusion Ki67, PCNA, MI, MVD, BFABP, and COX2 were significantly correlated with meningioma tumour grade and with each other. These findings, by correlating both intracellular fatty acid transport and eicosanoid metabolism with tumour proliferation, as determined by Ki67 labelling and mitotic index, suggest fatty acids are involved in the progression of meningiomas.
Resumo:
Lipophilic compounds such as retinoic acid and long-chain fatty acids regulate gene transcription by activating nuclear receptors such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). These compounds also bind in cells to members of the family of intracellular lipid binding proteins, which includes cellular retinoic acid-binding proteins (CRABPs) and fatty acid binding proteins (FABPs). We previously reported that CRABP-II enhances the transcriptional activity of RAR by directly targeting retinoic acid to the receptor. Here, potential functional cooperation between FABPs and PPARs in regulating the transcriptional activities of their common ligands was investigated. We show that adipocyte FABP and keratinocyte FABP (A-FABP and K-FABP, respectively) selectively enhance the activities of PPARgamma and PPARbeta, respectively, and that these FABPs massively relocate to the nucleus in response to selective ligands for the PPAR isotype which they activate. We show further that A-FABP and K-FABP interact directly with PPARgamma and PPARbeta and that they do so in a receptor- and ligand-selective manner. Finally, the data demonstrate that the presence of high levels of K-FABP in keratinocytes is essential for PPARbeta-mediated induction of differentiation of these cells. Taken together, the data establish that A-FABP and K-FABP govern the transcriptional activities of their ligands by targeting them to cognate PPARs in the nucleus, thereby enabling PPARs to exert their biological functions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have cloned a cDNA and gene from the tobacco hornworm, Manduca sexta, which is related to the vertebrate cellular retinoic acid binding proteins (CRABPs). CRABPs are members of the superfamily of lipid binding proteins (LBPs) and are thought to mediate the effects of retinoic acid (RA) on morphogenesis, differentiation, and homeostasis. This discovery of a Manduca sexta CRABP (msCRABP) demonstrates the presence of a CRABP in invertebrates. Compared with bovine/murine CRABP I, the deduced amino acid sequence of msCRABP is 71% homologous overall and 88% homologous for the ligand binding pocket. The genomic organization of msCRABP is conserved with other CRABP family members and the larger LBP superfamily. Importantly, the promoter region contains a motif that resembles an RA response element characteristic of the promoter region of most CRABPs analyzed. Three-dimensional molecular modeling based on postulated structural homology with bovine/murine CRABP I shows msCRABP has a ligand binding pocket that can accommodate RA. The existence of an invertebrate CRABP has significant evolutionary implications, suggesting CRABPs appeared during the evolution of the LBP superfamily well before vertebrate/invertebrate divergence, instead of much later in evolution in selected vertebrates.
Resumo:
Peripheral myelin protein 2 (Pmp2, P2 or Fabp8), a member of the fatty acid binding protein family, was originally described together with myelin basic protein (Mbp or P1) and myelin protein zero (Mpz or P0) as one of the most abundant myelin proteins in the peripheral nervous system (PNS). Although Pmp2 is predominantly expressed in myelinated Schwann cells, its role in glia is currently unknown. To study its function in PNS biology, we have generated a complete Pmp2 knockout mouse (Pmp2(-/-) ). Comprehensive characterization of Pmp2(-/-) mice revealed a temporary reduction in their motor nerve conduction velocity (MNCV). While this change was not accompanied by any defects in general myelin structure, we detected transitory alterations in the myelin lipid profile of Pmp2(-/-) mice. It was previously proposed that Pmp2 and Mbp have comparable functions in the PNS suggesting that the presence of Mbp can partially mask the Pmp2(-/-) phenotype. Indeed, we found that Mbp lacking Shi(-/-) mice, similar to Pmp2(-/-) animals, have preserved myelin structure and reduced MNCV, but this phenotype was not aggravated in Pmp2(-/-) /Shi(-/-) mutants indicating that Pmp2 and Mbp do not substitute each other's functions in the PNS. These data, together with our observation that Pmp2 binds and transports fatty acids to membranes, uncover a role for Pmp2 in lipid homeostasis of myelinating Schwann cells.
Resumo:
Sm14 is a 14-kDa vaccine candidate antigen from Schistosoma mansoni that seems to be involved in cytoplasmic trafficking of fatty acids. Although schistosomes have a high requirement for lipids, they are not able to synthesize fatty acids and sterols de novo. Thus, they must acquire host lipids. In order to determine whether Sm14 is present in different stages of the life cycle of the parasite, we performed RT-PCR. Sm14 mRNA was identified in all stages of the life cycle studied, mainly schistosomulum, adult worm and egg. Additionally, we used a rabbit anti-Sm14 polyclonal antibody in an indirect immunofluorescence assay to localize Sm14 in adult worm sections. The basal lamella of the tegument and the gut epithelium were strongly labeled. These tissues have a high flow of and demand for lipids, a finding that supports the putative role of Sm14 as an intracellular transporter of fatty acids from host cells.
Resumo:
Although it is the best characterized in vitro model of GH action, the mechanisms used by GH to induce differentiation of murine 3T3-F442A preadipocytes remain unclear. Here we have examined the role of three transcriptional regulators in adipogenesis. These regulators are either rapidly induced in response to GH [Stra13, signal transducer and activator of transcription (Stat) 3] or of central importance to GH signaling (Stat5). Retroviral transfection of 3T3-F442A preadipocytes was used to increase expression of Stra13, Stat3, and Stat5a. Only Stat5a transfection increased the expression of adipogenic markers peroxisome proliferator-activated receptor gamma, CCAAT enhancer binding protein (C/EBP)alpha, and adipose protein 2/fatty acid-binding protein in response to GH, as determined by quantitative RT-PCR. Transfection with constitutively active Stat3 and Stat5a revealed that constitutively active Stat5a but not Stat3 was able to replace the GH requirement for adipogenesis. Constitutively active Stat5a but not Stat3 was able to increase the formation of lipid droplets and expression of alpha-glycerol phosphate dehydrogenase toward levels seen in mature adipocytes. Constitutively active Stat5a was also able to increase the expression of transcripts for C/EBPalpha to similar levels as GH, and of C/EBPbeta, peroxisome proliferator-activated receptor gamma, and adipose protein 2/fatty acid-binding protein transcripts to a lesser extent. An in vivo role for GH in murine adipogenesis is supported by significantly decreased epididymal fat depot size in young GH receptor-deleted mice, before manifestation of the lipolytic actions of GH. We conclude that Stat5 is a critical factor in GH-induced, and potentially prolactin-induced, murine adipogenesis.