770 resultados para false recognition
Resumo:
We sometimes vividly remember things that did not happen, a phenomenon with general relevance, not only in the courtroom. It is unclear to what extent individual differences in false memories are driven by anatomical differences in memory-relevant brain regions. Here we show in humans that microstructural properties of different white matter tracts as quantified using diffusion tensor imaging are strongly correlated with true and false memory retrieval. To investigate these hypotheses, we tested a large group of participants in a version of the Deese-Roediger-McDermott paradigm (recall and recognition) and subsequently obtained diffusion tensor images. A voxel-based whole-brain level linear regression analysis was performedto relatefractional anisotropyto indices oftrue andfalse memory recall and recognition. True memory was correlated to diffusion anisotropy in the inferior longitudinal fascicle, the major connective pathway of the medial temporal lobe, whereas a greater proneness to retrieve false items was related to the superior longitudinal fascicle connecting frontoparietal structures. Our results show that individual differences in white matter microstructure underlie true and false memory performance.
Effectiveness Of Feature Detection Operators On The Performance Of Iris Biometric Recognition System
Resumo:
Iris Recognition is a highly efficient biometric identification system with great possibilities for future in the security systems area.Its robustness and unobtrusiveness, as opposed tomost of the currently deployed systems, make it a good candidate to replace most of thesecurity systems around. By making use of the distinctiveness of iris patterns, iris recognition systems obtain a unique mapping for each person. Identification of this person is possible by applying appropriate matching algorithm.In this paper, Daugman’s Rubber Sheet model is employed for irisnormalization and unwrapping, descriptive statistical analysis of different feature detection operators is performed, features extracted is encoded using Haar wavelets and for classification hammingdistance as a matching algorithm is used. The system was tested on the UBIRIS database. The edge detection algorithm, Canny, is found to be the best one to extract most of the iris texture. The success rate of feature detection using canny is 81%, False Accept Rate is 9% and False Reject Rate is 10%.
Resumo:
Object recognition is complicated by clutter, occlusion, and sensor error. Since pose hypotheses are based on image feature locations, these effects can lead to false negatives and positives. In a typical recognition algorithm, pose hypotheses are tested against the image, and a score is assigned to each hypothesis. We use a statistical model to determine the score distribution associated with correct and incorrect pose hypotheses, and use binary hypothesis testing techniques to distinguish between them. Using this approach we can compare algorithms and noise models, and automatically choose values for internal system thresholds to minimize the probability of making a mistake.
Resumo:
Numerous psychophysical experiments have shown an important role for attentional modulations in vision. Behaviorally, allocation of attention can improve performance in object detection and recognition tasks. At the neural level, attention increases firing rates of neurons in visual cortex whose preferred stimulus is currently attended to. However, it is not yet known how these two phenomena are linked, i.e., how the visual system could be "tuned" in a task-dependent fashion to improve task performance. To answer this question, we performed simulations with the HMAX model of object recognition in cortex [45]. We modulated firing rates of model neurons in accordance with experimental results about effects of feature-based attention on single neurons and measured changes in the model's performance in a variety of object recognition tasks. It turned out that recognition performance could only be improved under very limited circumstances and that attentional influences on the process of object recognition per se tend to display a lack of specificity or raise false alarm rates. These observations lead us to postulate a new role for the observed attention-related neural response modulations.
Resumo:
Motivation: In order to enhance genome annotation, the fully automatic fold recognition method GenTHREADER has been improved and benchmarked. The previous version of GenTHREADER consisted of a simple neural network which was trained to combine sequence alignment score, length information and energy potentials derived from threading into a single score representing the relationship between two proteins, as designated by CATH. The improved version incorporates PSI-BLAST searches, which have been jumpstarted with structural alignment profiles from FSSP, and now also makes use of PSIPRED predicted secondary structure and bi-directional scoring in order to calculate the final alignment score. Pairwise potentials and solvation potentials are calculated from the given sequence alignment which are then used as inputs to a multi-layer, feed-forward neural network, along with the alignment score, alignment length and sequence length. The neural network has also been expanded to accommodate the secondary structure element alignment (SSEA) score as an extra input and it is now trained to learn the FSSP Z-score as a measurement of similarity between two proteins. Results: The improvements made to GenTHREADER increase the number of remote homologues that can be detected with a low error rate, implying higher reliability of score, whilst also increasing the quality of the models produced. We find that up to five times as many true positives can be detected with low error rate per query. Total MaxSub score is doubled at low false positive rates using the improved method.
Resumo:
There is conflicting evidence whether Parkinson's disease (PD) is associated with impaired recognition memory and which of its underlying processes, namely recollection and familiarity, is more affected by the disease. The present study explored the contribution of recollection and familiarity to verbal recognition memory performance in 14 nondemented PD patients and a healthy control group with two different methods: (i) the word-frequency mirror effect, and (ii) Remember/Know judgments. Overall, recognition memory of patients was intact. The word-frequency mirror effect was observed both in patients and controls: Hit rates were higher and false alarm rates were lower for low-frequency compared to high-frequency words. However, Remember/Know judgments indicated normal recollection, but impaired familiarity. Our findings suggest that mild to moderate PD patients are selectively impaired at familiarity whereas recollection and overall recognition memory are intact.
Resumo:
We tested normal young and elderly adults and elderly Alzheimer’s disease (AD) patients on recognition memory for tunes. In Experiment 1, AD patients and age-matched controls received a study list and an old/new recognition test of highly familiar, traditional tunes, followed by a study list and test of novel tunes. The controls performed better than did the AD patients. The controls showed the “mirror effect” of increased hits and reduced false alarms for traditional versus novel tunes, whereas the patients false-alarmed as often to traditional tunes as to novel tunes. Experiment 2 compared young adults and healthy elderly persons using a similar design. Performance was lower in the elderly group, but both younger and older subjects showed the mirror effect. Experiment 3 produced confusion between preexperimental familiarity and intraexperimental familiarity by mixing traditional and novel tunes in the study lists and tests. Here, the subjects in both age groups resembled the patients of Experiment 1 in failing to show the mirror effect. Older subjects again performed more poorly, and they differed qualitatively from younger subjects in setting stricter criteria for more nameable tunes. Distinguishing different sources of global familiarity is a factor in tune recognition, and the data suggest that this type of source monitoring is impaired in AD and involves different strategies in younger and older adults.
Resumo:
WE INVESTIGATED HOW WELL STRUCTURAL FEATURES such as note density or the relative number of changes in the melodic contour could predict success in implicit and explicit memory for unfamiliar melodies. We also analyzed which features are more likely to elicit increasingly confident judgments of "old" in a recognition memory task. An automated analysis program computed structural aspects of melodies, both independent of any context, and also with reference to the other melodies in the testset and the parent corpus of pop music. A few features predicted success in both memory tasks, which points to a shared memory component. However, motivic complexity compared to a large corpus of pop music had different effects on explicit and implicit memory. We also found that just a few features are associated with different rates of "old" judgments, whether the items were old or new. Rarer motives relative to the testset predicted hits and rarer motives relative to the corpus predicted false alarms. This data-driven analysis provides further support for both shared and separable mechanisms in implicit and explicit memory retrieval, as well as the role of distinctiveness in true and false judgments of familiarity.
Resumo:
BACKGROUND Lung clearance index (LCI), a marker of ventilation inhomogeneity, is elevated early in children with cystic fibrosis (CF). However, in infants with CF, LCI values are found to be normal, although structural lung abnormalities are often detectable. We hypothesized that this discrepancy is due to inadequate algorithms of the available software package. AIM Our aim was to challenge the validity of these software algorithms. METHODS We compared multiple breath washout (MBW) results of current software algorithms (automatic modus) to refined algorithms (manual modus) in 17 asymptomatic infants with CF, and 24 matched healthy term-born infants. The main difference between these two analysis methods lies in the calculation of the molar mass differences that the system uses to define the completion of the measurement. RESULTS In infants with CF the refined manual modus revealed clearly elevated LCI above 9 in 8 out of 35 measurements (23%), all showing LCI values below 8.3 using the automatic modus (paired t-test comparing the means, P < 0.001). Healthy infants showed normal LCI values using both analysis methods (n = 47, paired t-test, P = 0.79). The most relevant reason for false normal LCI values in infants with CF using the automatic modus was the incorrect recognition of the end-of-test too early during the washout. CONCLUSION We recommend the use of the manual modus for the analysis of MBW outcomes in infants in order to obtain more accurate results. This will allow appropriate use of infant lung function results for clinical and scientific purposes.
Resumo:
This paper presents a robust approach for recognition of thermal face images based on decision level fusion of 34 different region classifiers. The region classifiers concentrate on local variations. They use singular value decomposition (SVD) for feature extraction. Fusion of decisions of the region classifier is done by using majority voting technique. The algorithm is tolerant against false exclusion of thermal information produced by the presence of inconsistent distribution of temperature statistics which generally make the identification process difficult. The algorithm is extensively evaluated on UGC-JU thermal face database, and Terravic facial infrared database and the recognition performance are found to be 95.83% and 100%, respectively. A comparative study has also been made with the existing works in the literature.
Resumo:
Individuals with autism spectrum disorder (ASD) have impaired ability to use context, which may manifest as alterations of relatedness within the semantic network. However, impairment in context use may be more difficult to detect in high-functioning adults with ASD. To test context use in this population, we examined the influence of context on memory by using the “false memory” test. In the false memory task, lists of words were presented to high-functioning subjects with ASD and matched controls. Each list consists of words highly related to an index word not on the list. Subjects are then given a recognition test. Positive responses to the index words represent false memories. We found that individuals with ASD are able to discriminate false memory items from true items significantly better than are control subjects. Memory in patients with ASD may be more accurate than in normal individuals under certain conditions. These results also suggest that semantic representations comprise a less distributed network in high-functioning adults with ASD. Furthermore, these results may be related to the unusually high memory capacities found in some individuals with ASD. Research directed at defining the range of tasks performed superiorly by high-functioning individuals with ASD will be important for optimal vocational rehabilitation.
Resumo:
Cued recall with an extralist cue poses a challenge for contemporary memory theory in that there is a need to explain how episodic and semantic information are combined. A parallel activation and intersection approach proposes one such means by assuming that an experimental cue will elicit its preexisting semantic network and a context cue will elicit a list memory. These 2 sources of information are then combined by focusing on information that is common to the 2 sources. Two key predictions of that approach are examined: (a) Combining semantic and episodic information can lead to item interactions and false memories, and (b) these effects are limited to memory tasks that involve an episodic context cue. Five experiments demonstrate such item interactions and false memories in cued recall but not in free association. Links are drawn between the use of context in this setting and in other settings.
Resumo:
The article describes researches of a method of person recognition by face image based on Gabor wavelets. Scales of Gabor functions are determined at which the maximal percent of recognition for search of a person in a database and minimal percent of mistakes due to false alarm errors when solving an access control task is achieved. The carried out researches have shown a possibility of improvement of recognition system work parameters in the specified two modes when the volume of used data is reduced.
Resumo:
Objective: Images on food and dietary supplement packaging might lead people to infer (appropriately or inappropriately) certain health benefits of those products. Research on this issue largely involves direct questions, which could (a) elicit inferences that would not be made unprompted, and (b) fail to capture inferences made implicitly. Using a novel memory-based method, in the present research, we explored whether packaging imagery elicits health inferences without prompting, and the extent to which these inferences are made implicitly. Method: In 3 experiments, participants saw fictional product packages accompanied by written claims. Some packages contained an image that implied a health-related function (e.g., a brain), and some contained no image. Participants studied these packages and claims, and subsequently their memory for seen and unseen claims were tested. Results: When a health image was featured on a package, participants often subsequently recognized health claims that—despite being implied by the image—were not truly presented. In Experiment 2, these recognition errors persisted despite an explicit warning against treating the images as informative. In Experiment 3, these findings were replicated in a large consumer sample from 5 European countries, and with a cued-recall test. Conclusion: These findings confirm that images can act as health claims, by leading people to infer health benefits without prompting. These inferences appear often to be implicit, and could therefore be highly pervasive. The data underscore the importance of regulating imagery on product packaging; memory-based methods represent innovative ways to measure how leading (or misleading) specific images can be. (PsycINFO Database Record (c) 2016 APA, all rights reserved)
Resumo:
This dissertation develops an innovative approach towards less-constrained iris biometrics. Two major contributions are made in this research endeavor: (1) Designed an award-winning segmentation algorithm in the less-constrained environment where image acquisition is made of subjects on the move and taken under visible lighting conditions, and (2) Developed a pioneering iris biometrics method coupling segmentation and recognition of the iris based on video of moving persons under different acquisitions scenarios. The first part of the dissertation introduces a robust and fast segmentation approach using still images contained in the UBIRIS (version 2) noisy iris database. The results show accuracy estimated at 98% when using 500 randomly selected images from the UBIRIS.v2 partial database, and estimated at 97% in a Noisy Iris Challenge Evaluation (NICE.I) in an international competition that involved 97 participants worldwide involving 35 countries, ranking this research group in sixth position. This accuracy is achieved with a processing speed nearing real time. The second part of this dissertation presents an innovative segmentation and recognition approach using video-based iris images. Following the segmentation stage which delineates the iris region through a novel segmentation strategy, some pioneering experiments on the recognition stage of the less-constrained video iris biometrics have been accomplished. In the video-based and less-constrained iris recognition, the test or subject iris videos/images and the enrolled iris images are acquired with different acquisition systems. In the matching step, the verification/identification result was accomplished by comparing the similarity distance of encoded signature from test images with each of the signature dataset from the enrolled iris images. With the improvements gained, the results proved to be highly accurate under the unconstrained environment which is more challenging. This has led to a false acceptance rate (FAR) of 0% and a false rejection rate (FRR) of 17.64% for 85 tested users with 305 test images from the video, which shows great promise and high practical implications for iris biometrics research and system design.