701 resultados para falling weight deflectometer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, ultra-thin whitetopping (UTW) has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavement. Numerous UTW projects have been constructed and tested, enabling researchers to identify key elements contributing to their successful performance. These elements include foundation support, interface bonding condition, portland cement concrete (PCC) overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. The interface bonding condition is the most important of these elements. It enables the pavement to act as a composite structure, thus reducing tensile stresses and allowing an ultra-thin PCC overlay to perform as intended. The Iowa Department of Transportation (Iowa DOT) UTW project (HR-559) initiated UTW in Iowa. The project is located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. The objective of this research was to investigate the interface bonding condition between an ultra-thin PCC overlay and an ACC base over time, considering the previously mentioned variables. This research lasted for five years, at which time it was extended an additional five years. The new phase of the project was initiated by removing cracked panels existing in the 2-inch thick PCC sections and replacing them with three inches of PCC. The project extension (TR 432) will provide an increased understanding of slab bonding conditions over a longer period, as well as knowledge regarding the behavior of the newly rehabilitated areas. In order to accomplish the goals of the project extension, Falling Weight Deflectometer (FWD) testing will continue to be conducted. Laboratory testing, field strain gage implementation, and coring will no longer be conducted. This report documents the planning and construction of the rehabilitation of HR 559 and the beginning of TR 432 during August of 1999.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Phase II follow-up study of IHRB Project TR-473 focused on the performance evaluation of rubblized pavements in Iowa. The primary objective of this study was to evaluate the structural condition of existing rubblized concrete pavements across Iowa through Falling Weight Deflectometer (FWD) tests, Dynamic Cone Penetrometer (DCP) tests, visual pavement distress surveys, etc. Through backcalculation of FWD deflection data using the Iowa State University's advanced layer moduli backcalculation program, the rubblized layer moduli were determined for various projects and compared with each other for correlating with the long-term pavement performance. The AASHTO structural layer coefficient for rubblized layer was also calculated using the rubblized layer moduli. To validate the mechanistic-empirical (M-E) hot mix asphalt (HMA) overlay thickness design procedure developed during the Phase I study, the actual HMA overlay thicknesses from the rubblization projects were compared with the predicted thicknesses obtained from the design software. The results of this study show that rubblization is a valid option to use in Iowa in the rehabilitation of portland cement concrete pavements provided the foundation is strong enough to support construction operations during the rubblization process. The M-E structural design methodology developed during Phase I can estimate the HMA overlay thickness reasonably well to achieve long-lasting performance of HMA pavements. The rehabilitation strategy is recommended for continued use in Iowa under those conditions conducive for rubblization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trench maintenance problems are caused by improper backfill placement and construction procedures. This report is part of a multiphase research project that aims to improve long-term performance of utility cut restoration trenches. The goal of this research is to improve pavement patch life and reduce maintenance of the repaired areas. The objectives were to use field-testing data, laboratory-testing data, and long-term monitoring (elevation survey and falling weight deflectometer testing) to suggest and modify recommendations from Phase I and to identify the principles of trench subsurface settlement and load distribution in utility cut restoration areas by using instrumented trenches. The objectives were accomplished by monitoring local agency utility construction from Phase I, constructing and monitoring the recommended trenches from Phase I, and instrumenting trenches to monitor changes in temperature, pressure, moisture content, and settlement as a function of time to determine the influences of seasonal changes on the utility cut performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reflective cracks form in pavements when hot-mix asphalt (HMA) overlays are placed over jointed and/or severely cracked rigid and flexible pavements. In the first part of the research, survival analysis was conducted to identify the most appropriate rehabilitation method for composite pavements and to evaluate the influence of different factors on reflective crack development. Four rehabilitation methods, including mill and fill, overlay, heater scarification (SCR), and rubblization, were analyzed using three performance indicators: reflective cracking, international roughness index (IRI), and pavement condition index (PCI). It was found that rubblization can significantly retard reflective cracking development compared to the other three methods. No significant difference for PCI was seen among the four rehabilitation methods. Heater scarification showed the lowest survival probability for both reflective cracking and IRI, while an overlay resulted in the poorest overall pavement condition based on PCI. In addition, traffic level was found not to be a significant factor for reflective cracking development. An increase in overlay thickness can significantly delay the propagation of reflective cracking for all four treatments. Soil types in rubblization pavement sites were assessed, and no close relationship was found between rubblized pavement performance and subgrade soil condition. In the second part of the research, the study objective was to evaluate the modulus and performance of four reflective cracking treatments: full rubblization, modified rubblization, crack and seat, and rock interlayer. A total of 16 pavement sites were tested by the surface wave method (SWM), and in the first four sites both falling weight deflectometer (FWD) and SWM were conducted for a preliminary analysis. The SWM gave close concrete layer moduli compared to the FWD moduli on a conventional composite pavement. However, the SWM provided higher moduli for the rubblized concrete layer. After the preliminary analysis, another 12 pavement sites were tested by the SWM. The results showed that the crack and seat method provided the highest moduli, followed by the modified rubblization method. The full rubblization and the rock interlayer methods gave similar, but lower, moduli. Pavement performance surveys were also conducted during the field study. In general, none of the pavement sites had rutting problems. The conventional composite pavement site had the largest amount of reflective cracking. A moderate amount of reflective cracking was observed for the two pavement sites with full rubblization. Pavements with the rock interlayer and modified rubblization treatments had much less reflective cracking. It is recommended that use of the modified rubblization and rock interlayer treatments for reflective cracking mitigation are best.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho estuda a obtenção de número estrutural em pavimentos flexíveis existentes. O estudo foi realizado em trechos pertencentes a duas regiões do Rio Grande do Sul, com a mesma formação geológica. De posse dos dados de levantamentos das deflexões obtidos com um equipamento tipo FWD (Falling Weight Deflectometer) e, com valores das espessuras dos pavimentos fornecidas pelo DAER-RS, foram realizadas retroanálises de todas as bacias de deformação levantadas, para cada ponto dos trechos estudados. Encontrados os Módulos de Resiliência de cada camada dos pavimentos, foram determinados, através das correlações da AASHTO (American Association of State Highway and Transportation Officials), os coeficientes estruturais e conseqüentemente os números estruturais para cada camada de pavimento. Por outro lado, determinou-se o raio de curvatura, para cada ponto levantado pelo equipamento, através da parábola de segundo grau utilizada pelo DNER (Departamento Nacional de Estradas de Rodagens). Verificou-se que os valores de número estrutural dos pavimentos e os raios de curvatura variam em proporções semelhantes, permitindo então a identificação de correlações entre os mesmos. As correlações entre raio de curvatura e número estrutural apresentadas neste trabalho facilitam a obtenção do número estrutural, sem utilizar retroanálises.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reciclagem com espuma de asfalto realizada na Rodovia BR-290/RS no ano de 2001, entre os km 97 e km 112, pista sentido Porto Alegre, também chamada Pista Sul, foi objeto de estudo nesta dissertação. Este estudo apresenta todas as etapas da reciclagem, desde a elaboração do projeto, as suas considerações, tais como volume de tráfego, clima da região, características funcionais e estruturais do pavimento, execução da camada reciclada, mencionando método de execução e controles adotados e por fim e como foco principal a análise do comportamento da mistura reciclada, compilando dados à época da execução, seis meses e um ano após a execução. Foram aproveitados dois levantamentos deflectométricos um realizado com o FWD(Falling Weight Deflectometer) no mês de dezembro de 2001 e outro realizado no mês de junho de 2002 com a viga eletrônica, também chamada deflectógrafo digital. Através destes levantamentos estimavam-se por retroanálise das bacias de deflexão, utilizando o programa computacional LAYMOD4, os módulos de cada camada do pavimento. Os resultados da reciclagem são satisfatórios. Analisando a camada reciclada isoladamente, comprovam-se várias citações de pesquisadores sobre o tema, tais como: a melhoria das propriedades mecânicas da reciclagem após tempo de cura e a dependência da mistura ao estado de tensões para seu comportamento elástico. Uma avaliação de desempenho foi desenvolvida, com o auxílio do programa PAVESYS9, revelando que o pavimento apresentou boa performance, comprovando mais uma vez, a melhoria no comportamento da camada reciclada com passado tempo de cura, aumentando o módulo de resiliencia e contribuindo menos para o afundamento de trilha de roda.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reciclagem profunda com espuma de asfalto tem sido uma alternativa de sucesso para a restauração de pavimentos degradados. Em relação às soluções tradicionais de reabilitação, como os recapeamentos, tem a vantagem de proporcionar a correção de defeitos em camadas inferiores, com a manutenção ou pequena elevação do greide da pista, além de ganhos ambientais, como um menor consumo de materiais virgens da natureza e redução do volume de material descartado. Entretanto, no Brasil não há método para dimensionamento estrutural para esta tecnologia, o que dificulta seu emprego. Para o desenvolvimento de um procedimento de dimensionamento que contemple este tipo de solução, foram estudados métodos presentes na bibliografia internacional: guia da AASHTO de 1993 e Caltrans, dos EUA, TRL386 e TRL611, da Inglaterra, as duas versões do guia sul-africano TG2 e os métodos oriundos do Austroads, tanto o procedimento interino de 2011 como adaptações de órgãos da Austrália e Nova Zelândia. Observou-se divergência de opiniões quanto ao comportamento do material reciclado com espuma de asfalto. Alguns órgãos e autores consideram o comportamento do mesmo mais próximo às misturas asfálticas, sendo o mecanismo de falha o trincamento, e outros o definem como semelhante a um material granular modificado com alta coesão e ruptura devido às deformações permanentes. Correlaciona-se tal associação ao teor de espuma usualmente utilizado nas obras rodoviárias. Outros aspectos que se destacam para este tipo de base são o ganho de resistência ao longo do tempo devido à cura, mesmo com início da operação da rodovia e a importância da infraestrutura remanescente no dimensionamento. Tais fatos foram corroborados pelos estudos de caso e resultados do trecho experimental construído na Rodovia Ayrton Senna - SP 070, monitorado por meio de ensaios deflectométricos com FWD durante um ano. Como resultado do trabalho, foi proposto um procedimento para o dimensionamento estrutural de pavimentos com camadas recicladas a frio com espuma de asfalto utilizando dados deflectométricos que atende o método do Manual de Pavimentação do Departamento Nacional de Infraestrutura de Transportes (DNIT) e incorpora diferentes aspectos na análise mecanicista. Outras conclusões são a viabilidade técnica a longo prazo da solução mencionada e a importância do controle tecnológico, com ênfase para o monitoramento deflectométrico nos primeiros meses de operação do pavimento para averiguar a evolução da cura do material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper summarises recent investigations into characterisation and performance of unbound roadbase materials carried out by Main Roads, Queensland (QDMR), on road projects across the state. Performance based tests such as the Repeated Load Triaxial (RLT) and the Wheel Tracker (WT) are the primary tools which are increasingly used by QDMR to overcome the limitations of simple specification type tests. This paper shows the inadequacy of current specification tests to rank material performance. The performance based tests show that the properties of the coarse aggregate alone are inadequate for sound performance; enable the contribution to mechanical behaviour by plastic fines with high matric suction to be assessed,- further, and facilitates ranking of material behaviour. Simple shakedown analyses undertaken yield similar material rankings. Finally, some materials from the performance based characterisation are compared with Falling Weight Deflectometer (FWD) in-service pavement performance data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dans un contexte climatique rigoureux comme celui du Québec, l’interaction entre la charge et le climat a une grande influence sur la performance des structures de chaussées flexibles (Doré et Zubeck, 2009). Pendant le dégel printanier, avec la fonte de la glace, la chaussée s’affaiblit et cet affaiblissement la rend vulnérable à la sollicitation par le trafic lourd ce qui accélère divers phénomènes de dégradation, notamment l’endommagement par fatigue et l’orniérage structural (Farcette, 2010). Afin de minimiser les effets des charges lourdes sur une chaussée affaiblie lors du printemps, les administrations routières choisissent souvent de limiter les charges par essieu ou par véhicule lors du dégel. L’objectif de ce projet est de développer un outil d’aide pour la gestion des restrictions de charge en période de dégel en fonction des données recueillies par les stations de météo routière. Deux sections expérimentales composées des mêmes matériaux mais avec des épaisseurs d’enrobés bitumineux différentes situées au Site Expérimental Routier de l’Université Laval (SERUL) ont été utilisées pour ce projet. Pour bien interpréter le comportement des structures, des jauges de déformations verticales et horizontales, des jauges de contraintes, des jauges de teneur en eau et des thermistances ont été installées dans chaque couche. Pour solliciter mécaniquement la chaussée, un déflectomètre à masse tombante (FWD) a été utilisé. Les résultats obtenus ont permis de de bien comprendre les mécanismes d’affaiblissement de la chaussée durant la période de dégel. Ils ont aussi montré que l’application d’une période de restriction de charge pendant la période de dégel permettait d’avoir un gain sur la durée de vie de la chaussée, cette période de restriction est donc justifiée et efficace. Néanmoins, pour une meilleure gestion du réseau routier, de nouveaux critères pour mieux déterminer la période de restriction de charges sont proposés.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate estimation of road pavement geometry and layer material properties through the use of proper nondestructive testing and sensor technologies is essential for evaluating pavement’s structural condition and determining options for maintenance and rehabilitation. For these purposes, pavement deflection basins produced by the nondestructive Falling Weight Deflectometer (FWD) test data are commonly used. The nondestructive FWD test drops weights on the pavement to simulate traffic loads and measures the created pavement deflection basins. Backcalculation of pavement geometry and layer properties using FWD deflections is a difficult inverse problem, and the solution with conventional mathematical methods is often challenging due to the ill-posed nature of the problem. In this dissertation, a hybrid algorithm was developed to seek robust and fast solutions to this inverse problem. The algorithm is based on soft computing techniques, mainly Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs) as well as the use of numerical analysis techniques to properly simulate the geomechanical system. A widely used pavement layered analysis program ILLI-PAVE was employed in the analyses of flexible pavements of various pavement types; including full-depth asphalt and conventional flexible pavements, were built on either lime stabilized soils or untreated subgrade. Nonlinear properties of the subgrade soil and the base course aggregate as transportation geomaterials were also considered. A computer program, Soft Computing Based System Identifier or SOFTSYS, was developed. In SOFTSYS, ANNs were used as surrogate models to provide faster solutions of the nonlinear finite element program ILLI-PAVE. The deflections obtained from FWD tests in the field were matched with the predictions obtained from the numerical simulations to develop SOFTSYS models. The solution to the inverse problem for multi-layered pavements is computationally hard to achieve and is often not feasible due to field variability and quality of the collected data. The primary difficulty in the analysis arises from the substantial increase in the degree of non-uniqueness of the mapping from the pavement layer parameters to the FWD deflections. The insensitivity of some layer properties lowered SOFTSYS model performances. Still, SOFTSYS models were shown to work effectively with the synthetic data obtained from ILLI-PAVE finite element solutions. In general, SOFTSYS solutions very closely matched the ILLI-PAVE mechanistic pavement analysis results. For SOFTSYS validation, field collected FWD data were successfully used to predict pavement layer thicknesses and layer moduli of in-service flexible pavements. Some of the very promising SOFTSYS results indicated average absolute errors on the order of 2%, 7%, and 4% for the Hot Mix Asphalt (HMA) thickness estimation of full-depth asphalt pavements, full-depth pavements on lime stabilized soils and conventional flexible pavements, respectively. The field validations of SOFTSYS data also produced meaningful results. The thickness data obtained from Ground Penetrating Radar testing matched reasonably well with predictions from SOFTSYS models. The differences observed in the HMA and lime stabilized soil layer thicknesses observed were attributed to deflection data variability from FWD tests. The backcalculated asphalt concrete layer thickness results matched better in the case of full-depth asphalt flexible pavements built on lime stabilized soils compared to conventional flexible pavements. Overall, SOFTSYS was capable of producing reliable thickness estimates despite the variability of field constructed asphalt layer thicknesses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Compaction control using lightweight deflectometers (LWD) is currently being evaluated in several states and countries and fully implemented for pavement construction quality assurance (QA) by a few. Broader implementation has been hampered by the lack of a widely recognized standard for interpreting the load and deflection data obtained during construction QA testing. More specifically, reliable and practical procedures are required for relating these measurements to the fundamental material property—modulus—used in pavement design. This study presents a unique set of data and analyses for three different LWDs on a large-scale controlled-condition experiment. Three 4.5x4.5 m2 test pits were designed and constructed at target moisture and density conditions simulating acceptable and unacceptable construction quality. LWD testing was performed on the constructed layers along with static plate loading testing, conventional nuclear gauge moisture-density testing, and non-nuclear gravimetric and volumetric water content measurements. Additional material was collected for routine and exploratory tests in the laboratory. These included grain size distributions, soil classification, moisture-density relations, resilient modulus testing at optimum and field conditions, and an advanced experiment of LWD testing on top of the Proctor compaction mold. This unique large-scale controlled-condition experiment provides an excellent high quality resource of data that can be used by future researchers to find a rigorous, theoretically sound, and straightforward technique for standardizing LWD determination of modulus and construction QA for unbound pavement materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work focused on the study of the impact event on molded parts in the framework of automotive components. The influence of the impact conditions and processing parameters on the mechanical behavior of talc-filled polypropylene specimens was analyzed. The specimens were lateral-gate discs produced by injection molding, and the mechanical characterization was performed through instrumented falling weight impact tests concomitantly assisted with high-speed videography. Results analyzed using the analysis of variance (ANOVA) method have shown that from the considered parameters, only the dart diameter and test temperature have significant influence on the falling weight impact properties. Higher dart diameter leads to higher peak force and peak energy results. Conversely, higher levels of test temperatures lead to lower values of peak force and peak energy. By means of high-speed videography, a more brittle fracture was observed for experiments with higher levels of test velocity and dart diameter and lower levels of test temperature. The injection-molding process conditions assessed in this study have an influence on the impact response of moldings, mainly on the deformation capabilities of the moldings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the fact that different injection molding conditions tailor the mechanical response of the thermoplastic material, such effect must be considered earlier in the product development process. The existing approaches implemented in different commercial software solutions are very limited in their capabilities to estimate the influence of processing conditions on the mechanical properties. Thus, the accuracy of predictive simulations could be improved. In this study, we demonstrate how to establish straightforward processing-impact property relationships of talc-filled injection-molded polypropylene disc-shaped parts by assessing the thermomechanical environment (TME). To investigate the relationship between impact properties and the key operative variables (flow rate, melt and mold temperature, and holding pressure), the design of experiments approach was applied to systematically vary the TME of molded samples. The TME is characterized on computer flow simulation outputsanddefined bytwo thermomechanical indices (TMI): the cooling index (CI; associated to the core features) and the thermo-stress index (TSI; related to the skin features). The TMI methodology coupled to an integrated simulation program has been developed as a tool to predict the impact response. The dynamic impact properties (peak force, peak energy, and puncture energy) were evaluated using instrumented falling weight impact tests and were all found to be similarly affected by the imposed TME. The most important molding parameters affecting the impact properties were found to be the processing temperatures (melt andmold). CI revealed greater importance for the impact response than TSI. The developed integrative tool provided truthful predictions for the envisaged impact properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A specification for contractor moisture quality control (QC) in roadway embankment construction has been in use for approximately 10 years in Iowa on about 190 projects. The use of this QC specification and the development of the soils certification program for the Iowa Department of Transportation (DOT) originated from Iowa Highway Research Board (IHRB) embankment quality research projects. Since this research, the Iowa DOT has applied compaction with moisture control on most embankment work under pavements. This study set out to independently evaluate the actual quality of compaction using the current specifications. Results show that Proctor tests conducted by Iowa State University (ISU) using representative material obtained from each test section where field testing was conducted had optimum moisture contents and maximum dry densities that are different from what was selected by the Iowa DOT for QC/quality assurance (QA) testing. Comparisons between the measured and selected values showed a standard error of 2.9 lb/ft3 for maximum dry density and 2.1% for optimum moisture content. The difference in optimum moisture content was as high as 4% and the difference in maximum dry density was as high as 6.5 lb/ft3 . The difference at most test locations, however, were within the allowable variation suggested in AASHTO T 99 for test results between different laboratories. The ISU testing results showed higher rates of data outside of the target limits specified based on the available contractor QC data for cohesive materials. Also, during construction observations, wet fill materials were often observed. Several test points indicated that materials were placed and accepted at wet of the target moisture contents. The statistical analysis results indicate that the results obtained from this study showed improvements over results from previous embankment quality research projects (TR-401 Phases I through III and TR-492) in terms of the percentage of data that fell within the specification limits. Although there was evidence of improvement, QC/QA results are not consistently meeting the target limits/values. Recommendations are provided in this report for Iowa DOT consideration with three proposed options for improvements to the current specifications. Option 1 provides enhancements to current specifications in terms of material-dependent control limits, training, sampling, and process control. Option 2 addresses development of alternative specifications that incorporate dynamic cone penetrometer or light weight deflectometer testing into QC/QA. Option 3 addresses incorporating calibrated intelligent compaction measurements into QC/QA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, IR thermography is used as a non-destructive tool for impact damage characterisation on thermoplastic E-glass/polypropylene composites for automotive applications. The aim of this experimentation was to compare impact resistance and to characterise damage patterns of different laminates, in order to provide indications for their use in components. Two E-glass/polypropylene composites, commingled ®Twintex (with three different weave structures: directional, balanced and 3-D) and random reinforced GMT, were in particular characterised. Directional and balanced Twintex were also coupled in a number of hybrid configurations with GMT to evaluate the possible use of GMT/Twintex hybrids in high-energy absorption components. The laminates were impacted using a falling weight tower, with impact energies ranging from 15 J to penetration. Using IR thermography during cooling down following a long pulse (3 s), impact damaged areas were characterised and the influence of weave structure on damage patterns was studied. IR thermography offered good accuracy for laminates with thickness not exceeding 3.5 mm: this appears to be a limit for the direct use of this method on components, where more refined signal treatment would probably be needed for impact damage characterisation.