998 resultados para failure wave
Resumo:
Submerged floating tunnel (SFT) is a popular concept of crossing waterways. The failure of the cable may occur due to vortex-induced-vibration (VIV), and the stability of the cable is crucial to the safety of the entire tunnel. Investigation results in recent years show that the vortex-induced vibration of the flexible cables with large aspect ratio reveals some new phenomena, for example, the vortex-induced wave, multi-mode competition, wide band random vibration, which have brought new challenges to the study of vortex-induced vibration of long flexible cables. In this paper, the dimensionless parameter controlling the wave types of dynamic response of slender cables undergoing vortex-induced vibration is investigated by means of dimensional analysis and finite element numerical simulations. Our results indicate that there are three types of response for a slender cable, i.e. standing wave vibration, traveling wave vibration and intermediate state. Based on dimensional analysis the controlling parameter is found to be related to the system damping including fluid damping and structural damping, order number of the locked-in modes and the aspect ratio of cable. Furthermore through numerical simulations and parameter regression, the expression and the critical value of controlling parameter is presented. At last the physical meaning of the parameter is analyzed and discussed.
Resumo:
Wave generation by the falling rock in the two-dimensional wave tank is experimentally and numerically studied, where the numerical model utilizes the boundary element method to solve the fully nonlinear potential flow theory. The wave profiles at different times are measured in the laboratory, which are also used to test the numerical model. Comparisons show that the experimental and numerical results are in good agreement, and the numerical model can be used to simulate the wave generation due to the submarine rock falling. Further numerical tests on the influences of the rock size, density, initial position and the falling angle on the wave elevation of the generated waves are performed, respectively. The results show that the size and density of the rock have strong effects on the maximum elevation of the generated wave, while the effects of the initial position and the falling angle of the rock are also significant. When the size or the density of the rock increases, the maximum elevation of the generated wave increases. The same effect on the generated wave would be produced if the initial position of the rock becomes closer to the surface, or the falling angle between the falling route and the vertical direction turns larger. In addition, the present numerical tests reveal that the submarine rock falling provides a new generation method for the breaking wave in the wave tank.
Resumo:
M. Hieber, I. Wood: Asymptotics of perturbations to the wave equation. In: Evolution Equations, Lecture Notes in Pure and Appl. Math., 234, Marcel Dekker, (2003), 243-252.
Resumo:
A weak instability mode, associated with phase-locked counterpropagating coastal Kelvin waves in horizontal anticyclonic shear, is found in the semigeostrophic (SG) equations for stratified flow in a channel. This SG instability mode approximates a similar mode found in the Euler equations in the limit in which particle-trajectory slopes are much smaller than f/N, where f is the Coriolis frequency and N > f the buoyancy frequency. Though weak under normal parameter conditions, this instability mode is of theoretical interest because its existence accounts for the failure of an Arnol’d-type stability theorem for the SG equations. In the opposite limit, in which the particle motion is purely vertical, the Euler equations allow only buoyancy oscillations with no horizontal coupling. The SG equations, on the other hand, allow a physically spurious coastal “mirage wave,” so called because its velocity field vanishes despite a nonvanishing disturbance pressure field. Counterpropagating pairs of these waves can phase-lock to form a spurious “mirage-wave instability.” Closer examination shows that the mirage wave arises from failure of the SG approximations to be self-consistent for trajectory slopes f/N.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Neuromuscular electrostimulation has become a promising issue in cardiovascular rehabilitation. However there are few articles published in the literature regarding neuromuscular electrostimulation in patients with heart failure during hospital stay. Methods: This is a randomized controlled pilot trial that aimed to investigate the effect of neuromuscular electrostimulation in the walked distance by the six-minute walking test in 30 patients admitted to ward for heart failure treatment in a tertiary cardiology hospital. Patients in the intervention group performed a conventional rehabilitation and neuromuscular electrostimulation. Patients underwent 60 minutes of electrostimulation (wave frequency was 20 Hz, pulse duration of 20 us) two times a day for consecutive days until hospital discharge. Results: The walked distance in the six-minute walking test improved 75% in the electrostimulation group (from 379.7 +/- 43.5 to 372.9 +/- 46.9 meters to controls and from 372.9 +/- 62.4 to 500 +/- 68 meters to electrostimulation, p<0.001). On the other hand, the walked distance in the control group did not change. Conclusion: The neuromuscular electrostimulation group showed greater improvement in the walked distance in the six-minute walking test in patients admitted to ward for compensation of heart failure.
Resumo:
Abstract Background Experimental studies demonstrate that infection with trypanosoma cruzi causes vasculitis. The inflammatory lesion process could hypothetically lead to decreased distensibility of large and small arteries in advanced Chagas' disease. We tested this hypothesis. Methods and results We evaluated carotid-femoral pulse-wave velocity (PWV) in 53 Chagas' disease patients compared with 31 healthy volunteers (control group). The 53 patients were classified into 3 groups: 1) 16 with indeterminate form of Chagas' disease; 2) 18 with Chagas' disease, electrocardiographic abnormalities, and normal systolic function; 3) 19 with Chagas' disease, systolic dysfunction, and mild-to-moderate congestive heart failure. No difference was noted between the 4 groups regarding carotid-femoral PWV (8.4 ± 1.1 vs 8.2 ± 1.5 vs 8.2 ± 1.4 vs 8.7 ± 1.6 m/s, P = 0.6) or pulse pressure (39.5 ± 7.6 vs 39.3 ± 8.1 vs 39.5 ± 7.4 vs 39.7 ± 6.9 mm Hg, P = 0.9). A positive, significant, similar correlation occurred between PWV and age in patients with Chagas' disease (r = 0.42, P = 0.002), in controls (r = 0.48, P = 0.006), and also between PWV and systolic blood pressure in both groups (patients with Chagas' disease, r = 0.38, P = 0.005; healthy subjects, r = 0.36, P = 0.043). Conclusion Carotid femoral pulse-wave velocity is not modified in patients with Chagas' disease, suggesting that elastic properties of large arteries are not affected in this disorder.
Resumo:
One observed vibration mode for Tainter gate skinplates involves the bending of the skinplate about a horizontal nodal line. This vibration mode can be approximated as a streamwise rotational vibration about the horizontal nodal line. Such a streamwise rotational vibration of a Tainter gate skinplate must push away water from the portion of the skinplate rotating into the reservoir and draw water toward the gate over that portion of the skinplate receding from the reservoir. The induced pressure is termed the push-and-draw pressure. In the present paper, this push-and-draw pressure is analyzed using the potential theory developed for dissipative wave radiation problems. In the initial analysis, the usual circular-arc skinplate is replaced by a vertical, flat, rigid weir plate so that theoretical calculations can be undertaken. The theoretical push-and-draw pressure is used in the derivation of the non-dimensional equation of motion of the flow-induced rotational vibrations. Non-dimensionalization of the equation of motion permits the identification of the dimensionless equivalent added mass and the wave radiation damping coefficients. Free vibration tests of a vertical, flat, rigid weir plate model, both in air and in water, were performed to measure the equivalent added mass and the wave radiation damping coefficients. Experimental results compared favorably with the theoretical predictions, thus validating the theoretical analysis of the equivalent added mass and wave radiation damping coefficients as a prediction tool for flow-induced vibrations. Subsequently, the equation of motion of an inclined circular-arc skinplate was developed by incorporating a pressure correction coefficient, which permits empirical adaptation of the results from the hydrodynamic pressure analysis of the vertical, flat, rigid weir plate. Results from in-water free vibration tests on a 1/31-scale skinplate model of the Folsom Dam Tainter gate are used to demonstrate the utility of the equivalent added mass coefficient.
Resumo:
Thixotropy is the characteristic of a fluid to form a gelled structure over time when it is not subjected to shearing, and to liquefy when agitated. Thixotropic fluids are commonly used in the construction industry (e.g., liquid concrete and drilling fluids), and related applications include some forms of mud flows and debris flows. This paper describes a basic study of dam break wave with thixotropic fluid. Theoretical considerations were developed based upon a kinematic wave approximation of the Saint-Venant equations down a prismatic sloping channel. A very simple thixotropic model, which predicts the basic theological trends of such fluids, was used. It describes the instantaneous state of fluid structure by a single parameter. The analytical solution of the basic flow motion and theology equations predicts three basic flow regimes depending upon the fluid properties and flow conditions, including the initial degree of jamming of the fluid (related to its time of restructuration at rest). These findings were successfully compared with systematic bentonite suspension experiments. The present work is the first theoretical analysis combining the basic principles of unsteady flow motion with a thixotropic fluid model and systematic laboratory experiments.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
PURPOSE: Increased arterial stiffness is a common finding in patients with end-stage renal disease. Following creation of an arteriovenous fistula (AVF), appropriate dilation of the feeding artery must occur to facilitate AVF maturation. Arterial stiffness may impair the arterial dilation required to facilitate AVF development and contribute to subsequent failure to mature (FTM). The aim of this pilot study was to investigate the association between measurements of central and peripheral arterial stiffness, and AVF FTM.
METHODS: Patients undergoing AVF creation in a single centre (Belfast City Hospital, UK) between January and December 2015 were invited to have their carotid-femoral pulse wave velocity (PWV), brachial-radial PWV and augmentation index (AI) measured prior to AVF creation. Subsequent AVF outcomes were identified.
RESULTS: Fifty-nine patients who had an AVF procedure were included in the final analysis (mean age 62 years); 50.8% had diabetes mellitus. The mean pre-operative arterial diameter for all AVFs was 3.9 mm. Average values for carotid-femoral PWV were 9.5 m/s, brachial-radial PWV 7.7 m/s and AI 25.6%. Using logistic regression, these arterial stiffness parameters did not predict AVF FTM: carotid-femoral PWV (P = 0.20), brachial-radial PWV (P = 0.13), AI (P = 0.50).
CONCLUSIONS: This is the largest study to date exploring the association between arterial stiffness and AVF FTM. The measured central and peripheral arterial stiffness parameters were not associated with AVF FTM. Further research is needed to define if non-invasive arterial physiological measurements would be clinically useful in the prediction of AVF FTM.
Resumo:
In cardiovascular disease the definition and the detection of the ECG parameters related to repolarization dynamics in post MI patients is still a crucial unmet need. In addition, the use of a 3D sensor in the implantable medical devices would be a crucial mean in the assessment or prediction of Heart Failure status, but the inclusion of such feature is limited by hardware and firmware constraints. The aim of this thesis is the definition of a reliable surrogate of the 500 Hz ECG signal to reach the aforementioned objective. To evaluate the worsening of reliability due to sampling frequency reduction on delineation performance, the signals have been consecutively down sampled by a factor 2, 4, 8 thus obtaining the ECG signals sampled at 250, 125 and 62.5 Hz, respectively. The final goal is the feasibility assessment of the detection of the fiducial points in order to translate those parameters into meaningful clinical parameter for Heart Failure prediction, such as T waves intervals heterogeneity and variability of areas under T waves. An experimental setting for data collection on healthy volunteers has been set up at the Bakken Research Center in Maastricht. A 16 – channel ambulatory system, provided by TMSI, has recorded the standard 12 – Leads ECG, two 3D accelerometers and a respiration sensor. The collection platform has been set up by the TMSI property software Polybench, the data analysis of such signals has been performed with Matlab. The main results of this study show that the 125 Hz sampling rate has demonstrated to be a good candidate for a reliable detection of fiducial points. T wave intervals proved to be consistently stable, even at 62.5 Hz. Further studies would be needed to provide a better comparison between sampling at 250 Hz and 125 Hz for areas under the T waves.