941 resultados para eyes- dragon
Resumo:
Purpose: To evaluate rates of visual field progression in eyes with optic disc hemorrhages and the effect of intraocular pressure (IOP) reduction on these rates. Design: Observational cohort study. Participants: The study included 510 eyes of 348 patients with glaucoma who were recruited from the Diagnostic Innovations in Glaucoma Study (DIGS) and followed for an average of 8.2 years. Methods: Eyes were followed annually with clinical examination, standard automated perimetry visual fields, and optic disc stereophotographs. The presence of optic disc hemorrhages was determined on the basis of masked evaluation of optic disc stereophotographs. Evaluation of rates of visual field change during follow-up was performed using the visual field index (VFI). Main Outcome Measures: The evaluation of the effect of optic disc hemorrhages on rates of visual field progression was performed using random coefficient models. Estimates of rates of change for individual eyes were obtained by best linear unbiased prediction (BLUP). Results: During follow-up, 97 (19%) of the eyes had at least 1 episode of disc hemorrhage. The overall rate of VFI change in eyes with hemorrhages was significantly faster than in eyes without hemorrhages (-0.88%/year vs. -0.38%/year, respectively, P < 0.001). The difference in rates of visual field loss pre- and post-hemorrhage was significantly related to the reduction of IOP in the post-hemorrhage period compared with the pre-hemorrhage period (r = -0.61; P < 0.001). Each 1 mmHg of IOP reduction was associated with a difference of 0.31%/year in the rate of VFI change. Conclusions: There was a beneficial effect of treatment in slowing rates of progressive visual field loss in eyes with optic disc hemorrhage. Further research should elucidate the reasons why some patients with hemorrhages respond well to IOP reduction and others seem to continue to progress despite a significant reduction in IOP levels. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references. Ophthalmology 2010; 117: 2061-2066 (C) 2010 by the American Academy of Ophthalmology.
Resumo:
PURPOSE: To evaluate the safety and efficacy of corneal collagen crosslinking (CXL) in patients with painful pseudophakic bullous keratopathy (PBK). SETTING: University of Sao Paulo, Sao Paulo and Sadalla Amin Ghanem Eye Hospital, Joinville, Santa Catarina, Brazil. METHODS: This prospective study included consecutive eyes with PBK that had CXL. After a 9.0 mm epithelial removal, riboflavin 0.1% with dextran 20% was applied for 30 minutes followed by ultraviolet-A irradiation (370 nm, 3 mW/cm(2)). Therapeutic contact lenses were placed for 1 week. Corneal transparency, central corneal thickness (CCT), and ocular pain were assessed preoperatively and 1 and 6 months postoperatively. Statistical analysis was by paired t tests. RESULTS: Fourteen patients (14 eyes) with a mean age 71.14 years +/- 11.70 (SD) (range 53 to 89 years) were enrolled. Corneal transparency was better in all eyes 1 month after surgery. At 6 months, corneal transparency was similar to preoperative levels (P = .218). The mean CCT was 747 mu m preoperatively and 623 mu m at 1 month; the decrease was statistically significant (P<.001). At 6 months, the mean CCT increased to 710 mu m, still significantly thinner than preoperatively (P = .006). Pain scores at 6 months were not significantly different than preoperatively (P = .066). CONCLUSIONS: Corneal CXL significantly improved corneal transparency, corneal thickness, and ocular pain 1 month postoperatively. However, it did not seem to have a long-lasting effect in decreasing pain and maintaining corneal transparency in patients with PBK.
Resumo:
PURPOSE. To evaluate the relationship between pattern electroretinogram (PERG) amplitude, macular and retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT), and visual field (VF) loss on standard automated perimetry (SAP) in eyes with temporal hemianopia from chiasmal compression. METHODS. Forty-one eyes from 41 patients with permanent temporal VF defects from chiasmal compression and 41 healthy subjects underwent transient full-field and hemifield (temporal or nasal) stimulation PERG, SAP and time domain-OCT macular and RNFL thickness measurements. Comparisons were made using Student`s t-test. Deviation from normal VF sensitivity for the central 18 of VF was expressed in 1/Lambert units. Correlations between measurements were verified by linear regression analysis. RESULTS. PERG and OCT measurements were significantly lower in eyes with temporal hemianopia than in normal eyes. A significant correlation was found between VF sensitivity loss and fullfield or nasal, but not temporal, hemifield PERG amplitude. Likewise a significant correlation was found between VF sensitivity loss and most OCT parameters. No significant correlation was observed between OCT and PERG parameters, except for nasal hemifield amplitude. A significant correlation was observed between several macular and RNFL thickness parameters. CONCLUSIONS. In patients with chiasmal compression, PERG amplitude and OCT thickness measurements were significant related to VF loss, but not to each other. OCT and PERG quantify neuronal loss differently, but both technologies are useful in understanding structure-function relationship in patients with chiasmal compression. (ClinicalTrials.gov number, NCT00553761.) (Invest Ophthalmol Vis Sci. 2009; 50: 3535-3541) DOI:10.1167/iovs.08-3093
Resumo:
The current study describes the morphologic macular features in two eyes that developed full-thickness macular holes in the setting of documented vitreofoveal separation. Using third-generation optical coherence tomography, complete vitreofoveal separation associated with the disruption of the inner foveal retina was documented in both cases. Five months after presentation, decreased vision and epiretinal membrane formation associated with development of a full-thickness macular hole were observed in the first patient. In the second patient, a full-thickness macular hole was demonstrated by optical coherence tomography 6 weeks after presentation. These findings suggest that full-thickness macular holes may develop in eyes with vitreofoveal separation. Evidence of the disturbance of the inner foveal architecture on optical coherence tomography indicates the potential role of factors other than anteroposterior or oblique vitreoretinal tractional forces in the genesis of some full-thickness macular holes.
Resumo:
Objective To report the biometric values and ultrasonographic aspects of the normal eye of the Striped owl (Rhinoptynx clamator). Sample population Twenty-seven healthy, free-living, adult Striped owls from the Ecological Park of Tiete Veterinary Ambulatory (Sao Paulo, Brazil). Procedures Both eyes of all owls underwent B-mode ultrasonographic examination and biometry was performed for lens axial length (WL), depth of the anterior (AC) and vitreous (VC) chambers, axial length of the globe (LB) and the pecten oculi (LP) of both eyes, using a 12 MHz probe. The owls were manually restrained without sedation and the eyes were topically anesthetized. Results Biometric and statistical findings were as follows: in the left eye, the means and standard deviations were: LB = 23.76 +/- 0.92 mm, WL = 7.79 +/- 0.27 mm, AC = 4.27 +/- 0.47 mm, VC = 11.36 +/- 0.29 mm and LP = 5.69 +/- 0.50 mm; in the right eye, the values were: LB = 24.25 +/- 0.79 mm, WL = 8.03 +/- 0.40 mm, AC = 4.56 +/- 0.52 mm, VC = 11.40 +/- 0.25 mm, and LP = 5.68 +/- 0.41 mm. No significant differences were found between left and right eyes measurements of LB, WL, AC, VC, and LP dimensions. Conclusions Ocular ultrasound aspects and biometric values of the Striped owl are reported. The study`s results provide means for various ocular measurements. The ultrasound is an easy and safe exam to be performed in the Striped owl`s eyes.
Resumo:
To understand how bees, birds, and fish may use colour vision for food selection and mate choice, we reconstructed views of biologically important objects taking into account the receptor spectral sensitivities. Reflectance spectra a of flowers, bird plumage, and fish skin were used to calculate receptor quantum catches. The quantum catches were then coded by red, green, and blue of a computer monitor; and powers, birds, and fish were visualized in animal colours. Calculations were performed for different illumination conditions. To simulate colour constancy, we used a von Kries algorithm, i.e., the receptor quantum catches were scaled so that the colour of illumination remained invariant. We show that on land this algorithm compensates reasonably well for changes of object appearance caused by natural changes of illumination, while in water failures of von Kries colour constancy are prominent. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The large eyes and well-developed visual system of billfishes suggest that vision is an important sense for the detection and interception of prey and lures. Investigations of visual abilities in these large pelagic fishes are difficult, however anatomical studies of billfish eyes and retinas allow prediction of a number of visual capabilities. From the density of ganglion cells in the blue marlin (Makaira nigricans) retina, visual acuities of less than 10 cycles per degree were derived, a surprisingly low visual resolution given the absolute size of the marlin eye. Cone photoreceptors, on the other hand, were present in high densities, resulting in a presumed summation of cones to ganglion cells at a ratio of 40:1, even in the area of best vision. The optical sensitivity of the marlin eye was high owing to the large dimensions of the cone photoreceptors. These results indicate that the marlin eye is specifically adapted to cope with the low light levels encountered during diving. Since the marlin is likely to use its vision at depth, it is suggested that this line of research could help estimate the limits of vertical distribution based on light level.