70 resultados para exploding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the time-dependent Gross-Pitaevskii equation we study the evolution of a collapsing and exploding Bose-Einstein condensate in different trap symmetries to see the effect of confinement on collapse and subsequent explosion, which can be verified in future experiments. We make a prediction for the evolution of the shape of the condensate and the number of atoms in it for different trap symmetries (cigar to pancake) as well as in the presence of an optical lattice potential. We also make a prediction for the jet formation in different cases when the collapse is suddenly terminated by changing the scattering length to zero via a Feshbach resonance. In addition to the usual global collapse to the center of the condensate, in the presence of an optical-lattice potential one could also have in certain cases independent collapse of parts of the condensate to local centers, which could be verified in experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, Donley et al. performed an experiment on the dynamics of collapsing and exploding Bose-Einstein condensates by suddenly changing the scattering length of atomic interaction to a large negative value on a preformed repulsive condensate of Rb-85 atoms in an axially symmetric trap. Consequently, the condensate collapses and ejects atoms via explosions, We show that the accurate numerical solution of the time-dependent Gross-Pitaevskii equation with axial symmetry can explain some aspects of the dynamics of the collapsing condensate. (C) 2002 Published by Elsevier B.V. B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulations based on the time-dependent mean-field Gross-Pitaevskii equation was performed to explain the dynamics of collapsing and exploding Bose-Einstein condensates (BEC) of 85Rb atoms. The atomic interaction was manipulated by an external magnetic field via a Feshbach resonance. On changing the scattering length of atomic interaction from a positive to a large negative value, the condensate collapsed and ejected atoms via explosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of small repulsive Bose-Einstein condensed vortex states of 85Rb atoms in a cylindrical traps with low angular momentum was studied. The time-dependent mean-field Gross-Pitaevskii equation was used for the study. The condensates collapsed and atoms ejected via explosion and a remnant condensate with a smaller number of atoms emerges that survived for a long time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research has identified healthcare professionals' belief in myths about children's experience of pain as a cause of inadequate pain treatment. In this study, 47 doctors and 36 nurses involved in paediatric care completed a detailed questionnaire on 'pain myths'. The findings indicate a more informed awareness among healthcare professionals regarding childhood pain than previously suggested and that unconditional belief in 'pain myths' is not widespread.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sound Thinking provides techniques and approaches to critically listen, think, talk and write about music you hear or make. It provides tips on making music and it encourages regular and deep thinking about music activities, which helps build a musical dialog that leads to deeper understanding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The book, New Dimensions in Privacy Law, has an arresting cover — a pack of paparazzi take photographs, with their flash-bulbs popping and exploding,like starbursts in the sky. The collection explores the valiant efforts of courts and parliaments to defend the privacy of individuals against such unwanted intrusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is focused on the development of a model for predicting the mean drop size in effervescent sprays. A combinatorial approach is followed in this modeling scheme, which is based on energy and entropy principles. The model is implemented in cascade in order to take primary breakup (due to exploding gas bubbles) and secondary breakup (due to shearing action of surrounding medium) into account. The approach in this methodology is to obtain the most probable drop size distribution by maximizing the entropy while satisfying the constraints of mass and energy balance. The comparison of the model predictions with the past experimental data is presented for validation. A careful experimental study is conducted over a wide range of gas-to-liquid ratios, which shows a good agreement with the model predictions: It is observed that the model gives accurate results in bubbly and annular flow regimes. However, discrepancies are observed in the transitional slug flow regime of the atomizer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type Ia supernovae, sparked off by exploding white dwarfs of mass close to the Chandrasekhar limit, play the key role in understanding the expansion rate of the Universe. However, recent observations of several peculiar type Ia supernovae argue for its progenitor mass to be significantly super-Chandrasekhar. We show that strongly magnetized white dwarfs not only can violate the Chandrasekhar mass limit significantly, but exhibit a different mass limit. We establish from a foundational level that the generic mass limit of white dwarfs is 2.58 solar mass. This explains the origin of overluminous peculiar type Ia supernovae. Our finding further argues for a possible second standard candle, which has many far reaching implications, including a possible reconsideration of the expansion history of the Universe. DOI: 10.1103/PhysRevLett.110.071102

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using idealized one-dimensional Eulerian hydrodynamic simulations, we contrast the behaviour of isolated supernovae with the superbubbles driven by multiple, collocated supernovae. Continuous energy injection via successive supernovae exploding within the hot/dilute bubble maintains a strong termination shock. This strong shock keeps the superbubble over-pressured and drives the outer shock well after it becomes radiative. Isolated supernovae, in contrast, with no further energy injection, become radiative quite early (less than or similar to 0.1Myr, tens of pc), and stall at scales less than or similar to 100 pc. We show that isolated supernovae lose almost all of their mechanical energy by 1 Myr, but superbubbles can retain up to similar to 40 per cent of the input energy in the form of mechanical energy over the lifetime of the star cluster (a few tens of Myr). These conclusions hold even in the presence of realistic magnetic fields and thermal conduction. We also compare various methods for implementing supernova feedback in numerical simulations. For various feedback prescriptions, we derive the spatial scale below which the energy needs to be deposited in order for it to couple to the interstellar medium. We show that a steady thermal wind within the superbubble appears only for a large number (greater than or similar to 10(4)) of supernovae. For smaller clusters, we expect multiple internal shocks instead of a smooth, dense thermalized wind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore the effect of modification to Einstein's gravity in white dwarfs for the first time in the literature, to the best of our knowledge. This leads to significantly sub- and super-Chandrasekhar limiting masses of white dwarfs, determined by a single model parameter. On the other hand, type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe, are believed to be triggered in white dwarfs having mass close to the Chandrasekhar limit. However, observations of several peculiar, under- and over-luminous SNeIa argue for exploding masses widely different from this limit. We argue that explosions of the modified gravity induced sub- and super-Chandrasekhar limiting mass white dwarfs result in under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes and, hence, serving as a missing link. Our discovery raises two fundamental questions. Is the Chandrasekhar limit unique? Is Einstein's gravity the ultimate theory for understanding astronomical phenomena? Both the answers appear to be no!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

从实验和数值模拟两方面对爆炸载荷对水泥试样的损伤破坏进行了研究。首先,在水中利用爆炸产生的爆炸冲击波对水泥试样进行损伤破坏,模拟“层内爆炸”采油技术中激波使岩石损伤开裂的现象;然后,利用波动力学理论,对激波在实验条件下对水泥试样的损伤破坏进行了数值模拟。结果表明,在冲击载荷作用下,水泥试样的损伤破坏可分为压实破坏、压实损伤、拉伸损伤、拉伸破坏4个区域,在压实损伤区水泥试样也具有较好的渗透性。数值模拟可以用来确定各种裂纹形成的应力条件,并可通过预制剖面上的裂纹分布来预测水泥试样内部裂纹分布的基本规律。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用水中爆炸冲击波使水泥试样损伤破坏,模拟爆炸采油时激波使岩石损伤开裂的现象.实验获得了适合本实验条件的激波峰压衰减规律p_m≈8.2(~3√W/R~(1.46)),得知压碎区尺度为集中装药特征尺度的2~5倍、拉伸损伤区尺度为集中装药特征尺度的20~30倍,激波使水泥试样破碎、拉裂的能量占总能量的2%~7%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过水中爆炸波对水泥试样的损伤破坏实验来模拟水力裂缝层内爆炸采油中激波使岩石损伤开裂的现象.结果表明,试样预制剖面上的裂纹分布可以近似代表其内部的裂纹分布规律.观察到了四个破坏区域:压实破坏区、压实损伤区、拉伸损伤区和拉伸破坏区,并对这些区域特征做了详细描述;利用冲击波的相关理论,对水泥试样损伤开裂的机理做了初步分析.研究发现,裂纹的起裂扩展与水泥试样的初始损伤有密切关系;并且裂纹的形状受炸药与水泥试样尺度比值以及炸药的安放位置等条件控制.最后通过对压实破坏区渗透率实验,发现压实破坏区也有较好的渗透性,这对层内爆炸采油技术的深入研究具有重要意义.