948 resultados para experimental visual perception


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a brief overview of the processing in the primary visual cortex, the multi-scale line/edge and keypoint representations, and a model of brightness perception. This model, which is being extended from 1D to 2D, is based on a symbolic line and edge interpretation: lines are represented by scaled Gaussians and edges by scaled, Gaussian-windowed error functions. We show that this model, in combination with standard techniques from graphics, provides a very fertile basis for non-photorealistic image rendering.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The visual perception of size in different regions of external space was studied in Parkinson's disease (PD). A group of patients with worse left-sided symptoms (LPD) was compared with a group with worse right-sided symptoms (RPD) and with a group of age-matched controls on judgements of the relative height or width of two rectangles presented in different regions of external space. The relevant dimension of one rectangle (the 'standard') was held constant, while that of the other (the 'variable') was varied in a method of constant stimuli. The point of subjective equality (PSE) of rectangle width or height was obtained by probit analysis as the mean of the resulting psychometric function. When the standard was in left space, the PSE of the LPD group occurred when the variable was smaller, and when the standard was in right space, when the variable was larger. Similarly, when the standard rectangle was presented in upper space, and the variable in lower space, the PSE occurred when the variable was smaller, an effect which was similar in both left and right spaces. In all these experiments, the PSEs for both the controls and the RPD group did not differ significantly, and were close to a physical match, and the slopes of the psychometric functions were steeper in the controls than the patients, though not significantly so. The data suggest that objects appear smaller in the left and upper visual spaces in LPD, probably because of right hemisphere impairment. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent theories propose that semantic representation and sensorimotor processing have a common substrate via simulation. We tested the prediction that comprehension interacts with perception, using a standard psychophysics methodology.While passively listening to verbs that referred to upward or downward motion, and to control verbs that did not refer to motion, 20 subjects performed a motion-detection task, indicating whether or not they saw motion in visual stimuli containing threshold levels of coherent vertical motion. A signal detection analysis revealed that when verbs were directionally incongruent with the motion signal, perceptual sensitivity was impaired. Word comprehension also affected decision criteria and reaction times, but in different ways. The results are discussed with reference to existing explanations of embodied processing and the potential of psychophysical methods for assessing interactions between language and perception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recognizing a class of movements as belonging to a "nominal" action category, such as walking, running, or throwing, is a fundamental human ability. Three experiments were undertaken to test the hypothesis that common ("prototypical") features of moving displays could be learned by observation. Participants viewed moving stick-figure displays resembling forearm flexion movements in the saggital plane. Four displays (presentation displays) were first presented in which one or more movement dimensions were combined with 2 respective cues: direction (up, down), speed (fast, slow), and extent (long, short). Eight test displays were then shown, and the observer indicated whether each test display was like or unlike those previously seen. The results showed that without corrective feedback, a single cue (e.g., up or down) could be correctly recognized, on average, with the proportion correct between .66 and .87. When two cues were manipulated (e.g., up and slow), recognition accuracy remained high, ranging between .72 and .89. Three-cue displays were also easily identified. These results provide the first empirical demonstration of action-prototype learning for categories of human action and show how apparently complex kinematic patterns can be categorized in terms of common features or cues. It was also shown that probability of correct recognition of kinematic properties was reduced when the set of 4 presentation displays were more variable with respect to their shared kinematic property, such as speed or amplitude. Finally, while not conclusive, the results (from 2 of the 3 experiments) did suggest that similarity (or "likeness") with respect to a common kinematic property (or properties) is more easily recognized than dissimilarity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problems with visual perceptual skills have been shown to have a negative impact on the daily living skills of individuals and are, therefore, commonly assessed by occupational therapists. The purpose of this study was to examine two types of reliability (internal consistency and test-retest reliability) of three newly revised or developed adult visual perception tests. The participants were 50 healthy adults, aged 18 to 55 years, from Melbourne, Victoria, Australia. The participants completed the Developmental Test of Visual Perception - Adolescent and Adult (DTVP-A), the Motor-Free Visual Perception Test - Third Edition (MVPT-3) and the Test of Visual Perceptual Skills (non-motor) - Third Edition (TVPS-3). Internal consistency was examined using Cronbach's alpha calculations and test-retest reliability was analysed using Spearman rho non-parametric correlation coefficients.

The results indicated that the DTVP-A, the MVPT-3 and the TVPS-3 had total scale internal consistency correlation scores of 0.60 or higher (0.60, 0.69 and 0.63 respectively). The majority of the subscales of each test had lower correlation coefficients than the overall scores (ranging from 0.22 to 0.49). For the DTVP-A, MVPT-3 and TVPS-3 total scale scores, the test-retest reliability correlation coefficients were statistically significant (rho = 0.46, p<0.05; rho = 0.62, p<0.01; and rho = 0.59, p<0.01, respectively). Overall, the three visual perceptual tests exhibited low to moderate levels of internal consistency and test-retest reliability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to isolate and investigate subcortical and cortical lateral interactions involved in flicker perception. We quantified the perceived flicker strength (PFS) in the center of a test stimulus which was simultaneously modulated with a surround stimulus (50% Michelson contrast in both stimuli). Subjects were requested to adjust the modulation depth of a separate matching stimulus that was physically identical to the center of the test stimulus but without the surround. Using LCD goggles, synchronized to the frame rate of a CRT screen, the center and surround could be presented monoptically or dichoptically. In the monoptic condition, center-surround interactions can have both subcortical and cortical origins. In the dichoptic condition, center-surround interactions cannot occur in the retina and the LGN, therefore isolating a cortical mechanism. Results revealed both a strong monoptic (subcortical plus cortical) lateral interaction and a weaker dichoptic (cortical) lateral interaction. Subtraction of the dichoptic from the monoptic data revealed a subcortical mechanism of the lateral interaction. While the modulation of the cortical PFS component showed a low-pass temporal-frequency tuning, the modulation of the subcortical PFS component was maximal at 6 Hz. These findings are consistent with two separate temporal channels influencing the monoptic PFS, each with distinct lateral interactions strength and frequency tuning characteristics. We conclude that both subcortical and cortical lateral interactions modulate flicker perception.