883 resultados para exercise intensity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to improve the current understanding of the adaptive response to exercise in humans, this dissertation performed a series of studies designed to examine the impact of training intensity and mode on aerobic capacity and performance, fibre-type specific adaptations to training, and individual patterns of response across molecular, morphological and genetic factors. Project #1 determined that training intensity, session dose, baseline VO2max and total training volume do not influence the magnitude of change in VO2max by performing a meta-regression, and meta-analysis of 28 different studies. The intensity of training had no effect on the magnitude of increase in maximal oxygen uptake in young healthy participants, but similar adaptations were achieved with lower training doses following high intensity training. Project # 2 determined the acute molecular response, and training-induced adaptations in aerobic performance, aerobic capacity and muscle phenotype following high-intensity interval training (HIT) or endurance exercise (END). The acute molecular response (fibre recruitment and signal activation) and training-induced adaptations in aerobic capacity, aerobic performance, and muscle phenotype were similar following HIT and END. Project # 3 examined the impact of baseline muscle morphology and molecular characteristics on the training response, and if muscle adaptations are coordinated. The muscle phenotype of individuals who experience the largest improvements (high responders) were lower before training for some muscle characteristics and molecular adaptations were coordinated within individual participants. Project # 4 examined the impact of 2 different intensities of HIT on the expression of nuclear and mitochondrial encoded genes targeted by PGC-1α. A systematic upregulation of nuclear and mitochondrial encoded genes was not present in the early recovery period following acute HIT, but the expression of mitochondrial genes were coordinated at an individual level. Collectively, results from the current dissertation contribute to our understanding of the molecular mechanisms influencing skeletal muscle and whole-body adaptive responses to acute exercise and training in humans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher (P = 0.037; 20%), whereas fat oxidation was lower (P = 0.037; −47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose (P = 0.024; 20%) and lactate (P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different (P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone (P = 0.019), cortisol (P < 0.01), and growth hormone (P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine (P = 0.11) and interleukin-6 (P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD (P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose The effect of acute exercise, and exercise intensity, on appetite control in obese individuals requires further study. The aim of this study was to compare the effects of acute isocaloric bouts (250 kcal) of high-intensity intermittent cycling (HIIC) and moderate-intensity continuous cycling (MICC) or short-duration HIIC (S-HIIC) (125 kcal) and a resting control condition on the appetite hormone responses, subjective feelings of appetite, energy intake (EI), and food reward in overweight/obese individuals. Methods This study is a randomized crossover study on 12 overweight/obese volunteers. Participants were assigned to the control, MICC, HIIC, and S-HIIC conditions, 1 wk apart, in a counterbalanced order. Exercise was performed 1 h after a standard breakfast. An ad libitum test lunch was served 3 h after breakfast. Fasting/postprandial plasma samples of insulin, acylated ghrelin, polypeptide YY3–36, and glucagon-like peptide 1 and subjective feelings of appetite were measured every 30 min for 3 h. Nutrient and taste preferences were measured at the beginning and end of each condition using the Leeds Food Preference Questionnaire. Results Insulin levels were significantly reduced, and glucagon-like peptide 1 levels significantly increased during all exercise bouts compared with those during rest. Acylated ghrelin plasma levels were lower in the MICC and HIIC, but not in S-HIIC, compared with those in control. There were no significant differences for polypeptide YY3–36 plasma levels, hunger or fullness ratings, EI, or food reward. Conclusions Our findings suggest that, in overweight/obese individuals, isocaloric bouts of moderate- or high-intensity exercise lead to a similar appetite response. This strengthens previous findings in normal-weight individuals that acute exercise, even at high intensity, does not induce any known physiological adaptation that would lead to increased EI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose/Objectives: To examine peak volume of oxygen consumption (VO2peak) changes after a high- or low-intensity exercise intervention.
 Design: Experimental trial comparing two randomized intervention groups with control. 
 Setting: An exercise clinic at a university in Australia.
 Sample: 87 prostate cancer survivors (aged 47–80 years) and 72 breast cancer survivors (aged 34–76 years).
 Methods: Participants enrolled in an eight-week exercise intervention (n = 84) or control (n = 75) group. Intervention participants were randomized to low-intensity (n = 44, 60%–65% VO2peak, 50%–65% of one repetition maximum [1RM]) or high-intensity (n = 40, 75%–80% VO2peak, 65%–80% 1RM) exercise groups. Participants in the control group continued usual routines. All participants were assessed at weeks 1 and 10. The intervention groups were reassessed four months postintervention for sustainability. 
 Main Research Variables: VO2peak and self-reported physical activity.
 Findings: Intervention groups improved VO2peak similarly (p = 0.083), and both more than controls (p < 0.001). The high-intensity group maintained VO2peak at follow-up, whereas the low-intensity group regressed (p = 0.021). The low-intensity group minimally changed from baseline to follow-up by 0.5 ml/kg per minute, whereas the high-intensity group significantly improved by 2.2 ml/kg per minute (p = 0.01). Intervention groups always reported similar physical activity levels. 
 Conclusions: Higher-intensity exercise provided more sustainable cardiorespiratory benefits than lower-intensity exercise.
 Implications for Nursing: Survivors need guidance on exercise intensity, because a high volume of low-intensity exercise may not provide sustained health benefits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose The aim of the present study was to determine if exercise intensity impacts upon the psychosocial responses of breast and prostate cancer survivors to a rehabilitation program. Methods Eighty-seven prostate and 72 breast cancer survivors participated in an 8-week exercise and supportive group psychotherapy intervention (n=84) or control (n=75) group. Intervention participants were randomized to low-to-moderate intensity exercise (LIG; n=44; 60–65 % VO2peak, 50–65 % one repetition maximum (1RM)) or moderate-to-high intensity exercise (HIG; n=40; 75–80 % VO2peak, 65–80 % 1RM) while controls continued usual care. Before and after the 8 weeks, all participants completed the Functional Assessment of Cancer Therapy-Breast or -Prostate to assess quality of life (QOL) and Behavioural Regulations of Exercise Version 2 for exercise motivation. Intervention participants also completed a follow-up assessment 4 months post-intervention. Results All three groups improved in QOL from baseline to post-intervention, with no significant differences. From postintervention to follow-up, the LIG and HIG similarly maintained QOL scores. Between baseline and post-intervention, both intervention arms improved their motivation to exercise compared to the controls (p=0.004). At the 4-month followup, the HIG had maintained their overall exercise motivation (p<0.001) and both domains of intrinsic motivation (identified regulation, p=0.047; intrinsic regulation, p=0.007); however, the LIG had regressed. Conclusions The structured intervention was successful at improving autonomous exercise motivation, regardless of exercise intensity. However, only those participants who had exercised at a higher intensity sustained their improvement. Intervention participation did not improve QOL more than controls. Implications for Cancer Survivors Higher-intensity exercise is more likely to result in more sustainable increases in motivation to exercise among cancer survivors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to determine the effect of exercise mode on the blood lactate removal during recovery of high-intensity exercise. Nine male individuals performed the following tests in order to determine the blood lactate removal: Running - 2x200 m, the subjects ran at their maximum capacity, and rested 2 min between each bout. Swimming - 2x50 m, the subjects swam at their maximum capacity, and rested 2 min between each bout. Each test was realized on different days with three recovery modes: passive (sitting down), swimming, or running. Recovery exercise intensity was corresponding to the aerobic threshold. All recovery activities lasted 30 min. The two forms of active recovery were initiated 2 min after the end of high-intensity exercise and lasted 15 min, and were followed by 13 min of seated rest. After 1,7, 12,17, and 30 min of the end of high-intensity exercise, blood samples (25 mu l) were collected in order to determine the blood lactate concentration. By linear regression, between the logarithm of lactate concentration and its respective time of recovery, the half-time of blood lactate removal (t1/2) was determined. Time of high-intensity exercise and the lactate concentration obtained in the 1(st) min of recovery were not different between running and swimming. Passive recovery (PR) following running (R-PR=25.5+/-4.3 min) showed a t1/2 significantly higher than PR after swimming (S-PR=18.6+/-4.3 min). The t1/2 of the sequences running-running (R-R=13.0 min), running-swimming (R-S=12.9+/-3.8 min), swimming-swimming (S-S=13.2+/-2.8 min), and swimming-running (S-R=12.9+/-3.8 min) were significantly lower than the t1/2 of the R-PR and S-PR. There was no difference between the t1/2 of the sequences R-R R-S, and S-S. on the other hand the sequence S-R showed a t1/2 significantly lower than the sequences S-S and R-R. It was concluded that the two forms of active recovery determine an increase in the blood lactate removal, regardless of the mode of high-intensity exercise performed previously. Active recovery performed by the muscle groups that were not previously fatigued, can improve the blood lactate removal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose The aim of the present study was to evaluate the effects of intensity and interval of recovery on performance in the bench press exercise, and the response of salivary lactate and alpha amylase levels. Methods Ten sportsman (aged 29 ± 4 years; body mass index 26 ± 2 kg/cm2 ) were divided in two groups: G70 (performing a bench press exercise at 70 % one repetition maximum—1RM), and G90 (performing a bench press exercise at 90 %—1RM). All groups were engaged in three intervals of recovery (30, 60 and 90 s). The maximum number of repetitions (MNR) and total weight lifted were computed, and saliva samples were collected 15 min before and after different intervals of recovery. For the comparison of the performance and biochemistry parameters, ANOVA tests for repeated measurements were conducted, with a significance level set at 5 %. Results In G70, the 30 s MNR was lower than the 60 and 90 s intervals of recovery (p\0.05) and the MNR with the 60 s interval of recovery was lower than the 90 s interval of recovery (p\0.041). Similarly, in G90 with the 30 s of interval of recovery, the sets were lower than observed with the 60 and 90 s (p\0.05), and MNR with the 60 s interval of recovery was lower than the 90 s interval of recovery (p\0.05). The salivary lactate showed an increase after exercise (p\0.05) when compared with the rest period for all groups, and no effects were observed for salivary alpha amylase. Conclusions Based on this result, the sets and reps can be modified to change the recovery time. This effect is very useful to improve the performance in relationship to different fitness levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well established that atherogenic dyslipidemia, characterized by high levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein (LDL) cholesterol and low levels of high-density lipoprotein (HDL) cholesterol, constitutes important risk factors for cardiovascular disease. Regular exercise has been associated with a reduced risk for metabolic diseases. However, studies supporting the concept that resistance exercise is a modifier of blood lipid parameters are often contradictory. The aim of this study was to investigate the effects of high-intensity resistance exercise on the serum levels of TG, TC, HDL and non-HDL cholesterol, glucose, and the liver function enzymes alanine aminotransferase (ALT, EC 2.6.1.2) and aspartate aminotransferase (AST, EC 2.6.1.1) in golden Syrian hamsters (Mesocricetus auratus (Waterhouse, 1839)) fed a hypercholesterolemic diet. Sedentary groups (S) and exercise groups (E) were fed a standard diet (SS and ES) or a cholesterol-enriched diet (standard plus 1% cholesterol, SC and EC). Resistance exercise was performed by jumps in the water, carrying a load strapped to the chest, representing 10 maximum repetitions (10 RM, 30 s rest, five days per week for five weeks). Mean blood sample comparisons were made by ANOVA + Tukey or ANOVA + Kruskal-Wallis tests (p < 0.05) to compare parametric and nonparametric samples, respectively. There were no differences in blood lipids between the standard diet groups (SS and ES) (p > 0.05). However, the EC group increased the glucose, non-HDL, and TC levels in comparison with the ES group. Moreover, the EC group increased the TG levels versus the SC group (p < 0.05). In addition, the ALT levels were increased only by diet treatment. These findings indicated that high-intensity resistance exercise contributed to dyslipidemia in hamsters fed a hypercholesterolemic diet, whereas liver function enzymes did not differ in regards to the exercise protocol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Few studies have focused on the metabolic responses to alternating high- and low-intensity exercise and, specifically, compared these responses to those seen during constant-load exercise performed at the same average power output. This study compared muscle metabolic responses between two patterns of exercise during which the intensity was either constant and just below critical power (CP) or that oscillated above and below CP. Six trained males (mean +/- SD age 23.6 +/- 2.6 y) completed two 30-minute bouts of cycling (alternating and constant) at an average intensity equal to 90% of CR The intensity during alternating exercise varied between 158% CP and 73% CP. Biopsy samples from the vastus lateralis muscle were taken before (PRE), at the midpoint and end (POST) of exercise and analysed for glycogen, lactate, PCr and pH. Although these metabolic variables in muscle changed significantly during both patterns of exercise, there were no significant differences (p > 0.05) between constant and alternating exercise for glycogen (PRE: 418.8 +/- 85 vs. 444.3 +/- 70; POST: 220.5 +/- 59 vs. 259.5 +/- 126mmol.kg(-1) dw), lactate (PRE: 8.5 +/- 7.7 vs. 8.5 +/- 8.3; POST: 49.9 +/- 19.0 vs. 42.6 +/- 26.6 mmol.kg(-1)dw), phosphocreatine (PRE: 77.9 +/- 11.6 vs. 75.7 +/- 16.9; POST: 65.8 +/- 12.1 vs. 61.2 +/- 12.7mmol.kg(-1)dw) or pH (PRE: 6.99 +/- 0.12 vs. 6.99 +/- 0.08; POST: 6.86 +/- 0.13 vs. 6.85 +/- 0.06), respectively. There were also no significant differences in blood lactate responses to the two patterns of exercise. These data suggest that, when the average power output is similar, large variations in exercise intensity exert no significant effect on muscle metabolism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The increasing prevalence of obesity in society has been associated with a number of atherogenic risk factors such as insulin resistance. Aerobic training is often recommended as a strategy to induce weight loss, with a greater impact of high-intensity levels on cardiovascular function and insulin sensitivity, and a greater impact of moderate-intensity levels on fat oxidation. Anaerobic high-intensity (supramaximal) interval training has been advocated to improve cardiovascular function, insulin sensitivity and fat oxidation. However, obese individuals tend to have a lower tolerance of high-intensity exercise due to discomfort. Furthermore, some obese individuals may compensate for the increased energy expenditure by eating more and/or becoming less active. Recently, both moderate- and high-intensity aerobic interval training have been advocated as alternative approaches. However, it is still uncertain as to which approach is more effective in terms of increasing fat oxidation given the issues with levels of fitness and motivation, and compensatory behaviours. Accordingly, the objectives of this thesis were to compare the influence of moderate- and high-intensity interval training on fat oxidation and eating behaviour in overweight/obese men. Two exercise interventions were undertaken by 10-12 overweight/obese men to compare their responses to study variables, including fat oxidation and eating behaviour during moderate- and high-intensity interval training (MIIT and HIIT). The acute training intervention was a methodological study designed to examine the validity of using exercise intensity from the graded exercise test (GXT) - which measured the intensity that elicits maximal fat oxidation (FATmax) - to prescribe interval training during 30-min MIIT. The 30-min MIIT session involved 5-min repetitions of workloads 20% below and 20% above the FATmax. The acute intervention was extended to involve HIIT in a cross-over design to compare the influence of MIIT and HIIT on eating behaviour using subjective appetite sensation and food preference through the liking and wanting test. The HIIT consisted of 15-sec interval training at 85 %VO2peak interspersed by 15-sec unloaded recovery, with a total mechanical work equal to MIIT. The medium term training intervention was a cross-over 4-week (12 sessions) MIIT and HIIT exercise training with a 6-week detraining washout period. The MIIT sessions consisted of 5-min cycling stages at ±20% of mechanical work at 45 %VO2peak, and the HIIT sessions consisted of repetitive 30-sec work at 90 %VO2peak and 30-sec interval rests, during identical exercise sessions of between 30 and 45 mins. Assessments included a constant-load test (45 %VO2peak for 45 mins) followed by 60-min recovery at baseline and the end of 4-week training, to determine fat oxidation rate. Participants’ responses to exercise were measured using blood lactate (BLa), heart rate (HR) and rating of perceived exertion (RPE) and were measured during the constant-load test and in the first intervention training session of every week during training. Eating behaviour responses were assessed by measuring subjective appetite sensations, liking and wanting and ad libitum energy intake. Results of the acute intervention showed that FATmax is a valid method to estimate VO2 and BLa, but is not valid to estimate HR and RPE in the MIIT session. While the average rate of fat oxidation during 30-min MIIT was comparable with the rate of fat oxidation at FATmax (0.16 ±0.09 and 0.14 ±0.08 g/min, respectively), fat oxidation was significantly higher at minute 25 of MIIT (P≤0.01). In addition, there was no significant difference between MIIT and HIIT in the rate of appetite sensations after exercise, but there was a tendency towards a lower rate of hunger after HIIT. Different intensities of interval exercise also did not affect explicit liking or implicit wanting. Results of the medium-term intervention indicated that current interval training levels did not affect body composition, fasting insulin and fasting glucose. Maximal aerobic capacity significantly increased (P≤0.01) (2.8 and 7.0% after MIIT and HIIT respectively) during GXT, and fat oxidation significantly increased (P≤0.01) (96 and 43% after MIIT and HIIT respectively) during the acute constant-load exercise test. RPE significantly decreased after HIIT greater than MIIT (P≤0.05), and the decrease in BLa was greater during the constant-load test after HIIT than MIIT, but this difference did not reach statistical significance (P=0.09). In addition, following constant-load exercise, exercise-induced hunger and desire to eat decreased after HIIT greater than MIIT but were not significant (p value for desire to eat was 0.07). Exercise-induced liking of high-fat sweet (HFSW) and high-fat non-sweet (HFNS) foods increased after MIIT and decreased after HIIT (p value for HFNS was 0.09). The intervention explained 12.4% of the change in fat intake (p = 0.07). This research is significant in that it confirmed two points in the acute study. While the rate of fat oxidation increased during MIIT, the average rate of fat oxidation during 30-min MIIT was comparable with the rate of fat oxidation at FATmax. In addition, manipulating the intensity of acute interval exercise did not affect appetite sensations and liking and wanting. In the medium-term intervention, constant-load exercise-induced fat oxidation significantly increased after interval training, independent of exercise intensity. In addition, desire to eat, explicit liking for HFNS and fat intake collectively confirmed that MIIT is accompanied by a greater compensation of eating behaviour than HIIT. Findings from this research will assist in developing exercise strategies to provide obese men with various training options. In addition, the finding that overweight/obese men expressed a lower RPE and decreased BLa after HIIT compared with MIIT is contrary to the view that obese individuals may not tolerate high-intensity interval training. Therefore, high-intensity interval training can be advocated among the obese adult male population. Future studies may extend this work by using a longer-term intervention.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0–90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1–48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness/training status. Our results demonstrate that the time required for complete cardiac autonomic recovery after a single aerobic-based training session is up to 24 h following low-intensity exercise, 24–48 h following threshold-intensity exercise and at least 48 h following high-intensity exercise. Based on limited data, exercise duration is unlikely to be the greatest determinant of cardiac parasympathetic reactivation. Cardiac autonomic recovery occurs more rapidly in individuals with greater aerobic fitness. Our data lend support to the concept that in conjunction with daily training logs, data on cardiac parasympathetic activity are useful for individualizing training programmes. In the final sections of this review, we provide recommendations for structuring training microcycles with reference to cardiac parasympathetic recovery kinetics. Ultimately, coaches should structure training programmes tailored to the unique recovery kinetics of each individual.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose The objectives of this study were to examine the effect of 4-week moderate- and high-intensity interval training (MIIT and HIIT) on fat oxidation and the responses of blood lactate (BLa) and rating of perceived exertion (RPE). Methods Ten overweight/obese men (age = 29 ±3.7 years, BMI = 30.7 ±3.4 kg/m2) participated in a cross-over study of 4-week MIIT and HIIT training. The MIIT training sessions consisted of 5-min cycling stages at mechanical workloads 20% above and 20% below 45%VO2peak. The HIIT sessions consisted of intervals of 30-s work at 90%VO2peak and 30-s rest. Pre- and post-training assessments included VO2max using a graded exercise test (GXT) and fat oxidation using a 45-min constant-load test at 45%VO2max. BLa and RPE were also measured during the constant-load exercise test. Results There were no significant changes in body composition with either intervention. There were significant increases in fat oxidation after MIIT and HIIT (p ≤ 0.01), with no effect of intensity. BLa during the constant-load exercise test significantly decreased after MIIT and HIIT (p ≤ 0.01), and the difference between MIIT and HIIT was not significant (p = 0.09). RPE significantly decreased after HIIT greater than MIIT (p ≤ 0.05). Conclusion Interval training can increase fat oxidation with no effect of exercise intensity, but BLa and RPE decreased after HIIT to greater extent than MIIT.