994 resultados para evanescently-coupled uni-traveling-carrier photodiode
Resumo:
Advanced doping technologies are key for the continued scaling of semiconductor devices and the maintenance of device performance beyond the 14 nm technology node. Due to limitations of conventional ion-beam implantation with thin body and 3D device geometries, techniques which allow precise control over dopant diffusion and concentration, in addition to excellent conformality on 3D device surfaces, are required. Spin-on doping has shown promise as a conventional technique for doping new materials, particularly through application with other dopant methods, but may not be suitable for conformal doping of nanostructures. Additionally, residues remain after most spin-on-doping processes which are often difficult to remove. In-situ doping of nanostructures is especially common for bottom-up grown nanostructures but problems associated with concentration gradients and morphology changes are commonly experienced. Monolayer doping (MLD) has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from traditional silicon and germanium devices to emerging replacement materials such as III-V compounds but challenges still remain, especially with regard to metrology and surface chemistry at such small feature sizes. This article summarises and critically assesses developments over the last number of years regarding the application of gas and solution phase techniques to dope silicon-, germanium- and III-V-based materials and nanostructures to obtain shallow diffusion depths coupled with high carrier concentrations and abrupt junctions.
Resumo:
"Contract No. AF33(616)-3220 Project No. 6(7-4600) Task 40572 Wright Air Development Center"
Resumo:
We report femtosecond time-resolved reflectivity measurements of coherent phonons in tellurium performed over a wide range of temperatures (3-296 K) and pump-laser intensities. A totally symmetric A(1) coherent phonon at 3.6 THz responsible for the oscillations in the reflectivity data is observed to be strongly positively chirped (i.e., phonon time period decreases at longer pump-probe delay times) with increasing photoexcited carrier density, more so at lower temperatures. We show that the temperature dependence of the coherent phonon frequency is anomalous (i.e, increasing with increasing temperature) at high photoexcited carrier density due to electron-phonon interaction. At the highest photoexcited carrier density of (1.4 x 10(21) cm(-3) and the sample temperature of 3 K, the lattice displacement of the coherent phonon mode is estimated to be as high as similar to 0.24 angstrom. Numerical simulations based on coupled effects of optical absorption and carrier diffusion reveal that the diffusion of carriers dominates the nonoscillatory electronic part of the time-resolved reflectivity. Finally, using the pump-probe experiments at low carrier density of 6 x 10(18) cm(-3), we separate the phonon anharmonicity to obtain the electron-phonon coupling contribution to the phonon frequency and linewidth.
Resumo:
This paper presents a detailed investigation of the erects of piezoelectricity, spontaneous polarization and charge density on the electronic states and the quasi-Fermi level energy in wurtzite-type semiconductor heterojunctions. This has required a full solution to the coupled Schrodinger-Poisson-Navier model, as a generalization of earlier work on the Schrodinger-Poisson problem. Finite-element-based simulations have been performed on a A1N/GaN quantum well by using both one-step calculation as well as the self-consistent iterative scheme. Results have been provided for field distributions corresponding to cases with zero-displacement boundary conditions and also stress-free boundary conditions. It has been further demonstrated by using four case study examples that a complete self-consistent coupling of electromechanical fields is essential to accurately capture the electromechanical fields and electronic wavefunctions. We have demonstrated that electronic energies can change up to approximately 0.5 eV when comparing partial and complete coupling of electromechanical fields. Similarly, wavefunctions are significantly altered when following a self-consistent procedure as opposed to the partial-coupling case usually considered in literature. Hence, a complete self-consistent procedure is necessary when addressing problems requiring more accurate results on optoelectronic properties of low-dimensional nanostructures compared to those obtainable with conventional methodologies.
Resumo:
Downscaling of yttria stabilized zirconia (YSZ) based electrochemical devices and gate oxide layers requires successful pattern transfer on YSZ thin films. Among a number of techniques available to transfer patterns to a material, reactive ion etching has the capability to offer high resolution, easily controllable, tunable anisotropic/isotropic pattern transfer for batch processing. This work reports inductively coupled reactive ion etching studies on sputtered YSZ thin films in fluorine and chlorine based plasmas and their etch chemistry analyses using x-ray photoelectron spectroscopy. Etching in SF6 plasma gives an etch rate of 7 nm/min chiefly through physical etching process. For same process parameters, in Cl-2 and BCl3 plasmas, YSZ etch rate is 17 nm/min and 45 nm/min, respectively. Increased etch rate in BCl3 plasma is attributed to its oxygen scavenging property synergetic with other chemical and physical etch pathways. BCl3 etched YSZ films show residue-free and smooth surface. The surface atomic concentration ratio of Zr/Y in BCl3 etched films is closer to as-annealed YSZ thin films. On the other hand, Cl-2 etched films show surface yttrium enrichment. Selectivity ratio of YSZ over silicon (Si), silicon dioxide (SiO2) and silicon nitride (Si3N4) are 1:2.7, 1:1, and 1:0.75, respectively, in BCl3 plasma. YSZ etch rate increases to 53 nm/min when nonoxygen supplying carrier wafer like Si3N4 is used. (C) 2015 American Vacuum Society.
Resumo:
The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.
Resumo:
Two-dimensional (2D) kinetics of receptor-ligand interactions governs cell adhesion in many biological processes. While the dissociation kinetics of receptor-ligand bond is extensively investigated, the association kinetics has much less been quantified. Recently receptor-ligand interactions between two surfaces were investigated using a thermal fluctuation assay upon biomembrane force probe technique (Chen et al. in Biophys J 94:694-701, 2008). The regulating factors on association kinetics, however, are not well characterized. Here we developed an alternative thermal fluctuation assay using optical trap technique, which enables to visualize consecutive binding-unbinding transition and to quantify the impact of microbead diffusion on receptor-ligand binding. Three selectin constructs (sLs, sPs, and PLE) and their ligand P-selectin glycoprotein ligand 1 were used to conduct the measurements. It was indicated that bond formation was reduced by enhancing the diffusivity of selectin-coupled carrier, suggesting that carrier diffusion is crucial to determine receptor-ligand binding. It was also found that 2D forward rate predicted upon first-order kinetics was in the order of sPs > sLs > PLE and bond formation was history-dependent. These results further the understandings in regulating association kinetics of surface-bound receptor-ligand interactions.
Resumo:
Results are given for bistable effects in closely coupled twin stripe lasers. These devices use controlled adjustment of asymmetric transverse optical gain to obtain bistability. Various bistable effects have been observed. Initially the authors reported a large light/current hysteresis loop obtained as the drive current to the laser was raised and lowered. Information concerning the bistable mechanisms was then obtained by applying small current pulses into each stripe. It was thus found that bistability was involved with the switching from one stable laser waveguiding mechanism to another. More recently the experimental measurement system has been much improved. Through the use of computer control of motorised micromovements and computer controlled data management, time resolved near and far field, and charge carrier concentration distribution measurements have been more accurately carried out. The paper will outline briefly this system, and report on how it has helped to reveal new mechanisms of bistability in twin stripe lasers.
Resumo:
Coupled microcircular resonators tangentially coupled to a bus waveguide, which is between the resonators, are numerically investigated by the finite-difference time-domain technique. For symmetrically coupled microcircular resonators with refractive index of 3.2, radius of 2 mu m, and width of the bus waveguide of 0.4 mu m, a mode Q factor of the order of 105 is obtained for a mode at the frequency of 243 THz. An output coupling efficiency of as high as 0.99 is calculated for a mode with a Q factor ranging from 10(3) to 10(4). The mode Q factor is 2 orders larger than that of the modes confined in a single circular resonator tangentially coupled to the same bus waveguide. Furthermore, the high Q traveling modes in the coupled microcircular resonators are suitable for optical single processing.
Resumo:
We show that grey solitons, grey-grey soliton pairs, and multi-component grey solitons can be realized in two-photon photorefractive media. The results for soliton pairs and multi-component solitons are derived under the assumption that the carrier beams share the same polarization, wavelength, and are mutually incoherent.
Resumo:
We have investigated the temperature dependence of photoluminescence (PL) properties of a number of self-organized InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 to 3 ML. The temperature dependence of InAs exciton emission and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML. The fast redshift of PL energy and an anomalous decrease of linewidth with increasing temperature were observed and attributed to the efficient relaxation process of carriers in multilayer samples, resulting from the spread and penetration of the carrier wave functions in coupled InAs quantum dots. The measured thermal activation energies of different samples demonstrated that the InAs wetting layer may act as a barrier for the thermionic emission of carriers in high-quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to escape thermally from the localized states.
Resumo:
A method for the determiantion of rare earth elements in biological sampels by inductively coupled plasma mass spectrometry was developed. Oxide ion yield of the rare earth elements (RFE) decreased with the increasing of RF power and the sampling depth, or with the decreasing of carrier gas flow rate. The spectral interference arising from (PrO)-Pr-141-O-16 on Gd-157 must be corrected. if the concentration of Ba was high enough, it was necessary to correct the spectral interference arising from (BO)-B-135-O-16 on Eu-151, and it was not necessary to correct spectral interference arising from (NdO)-Nd-143-O-16 on Tb-159 etc. in the biological samples under the selected operation parameters. In the biological sample, the major matrix elements, such as K, Na and Ca, result in the suppression of REEs signals and the suppression degree of the Ca is grezter than that of the K and Na. The mussel sample was digested by thd dry ashing, wet digestion with HNO3 + H2O2 and HNO3 + HClO4, respectively. The analytical results of REEs were consistent with each other. Detection limits for REEs are 0.001 similar to 0.013 mu g/L. Recoveries of standard addition are 91.7% similar to 125%. REEs in biological samples were determined directly without separation and preconcentration procedure.
Resumo:
Gas chromatography (GC) is an analytical tool very useful to investigate the composition of gaseous mixtures. The different gases are separated by specific columns but, if hydrogen (H2 ) is present in the sample, its detection can be performed by a thermal conductivity detector or a helium ionization detector. Indeed, coupled to GC, no other detector can perform this detection except the expensive atomic emission detector. Based on the detection and analysis of H2 isotopes by low-pressure chemical ionization mass spectrometry (MS), a new method for H2 detection by GC coupled to MS with an electron ionization ion source and a quadrupole analyser is presented. The presence of H2 in a gaseous mixture could easily be put in evidence by the monitoring of the molecular ion of the protonated carrier gas. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
A branching random motion on a line, with abrupt changes of direction, is studied. The branching mechanism, being independient of random motion, and intensities of reverses are defined by a particle's current direction. A soluton of a certain hyperbolic system of coupled non-linear equations (Kolmogorov type backward equation) have a so-called McKean representation via such processes. Commonly this system possesses traveling-wave solutions. The convergence of solutions with Heaviside terminal data to the travelling waves is discussed.This Paper realizes the McKean programme for the Kolmogorov-Petrovskii-Piskunov equation in this case. The Feynman-Kac formula plays a key role.