902 resultados para eucalypt forest
Resumo:
This project aims to address the growing need for a coordinated approach to research into the biological control of Australian eucalypt insect pests by scoping the formation of a Centre in Australia which would (a) coordinate the evaluation and provision of biological control agents (initially to South Africa and Brazil, but in future years more widely), (b) research the role natural enemies play in pest population regulation in Australian eucalypt plantations and how this may be enhanced as a management tool, and (c) form a network focussed on forest biosecurity with an emphasis on eucalypt pests and pathogens.
Resumo:
Context Most studies assess pollination success at capsule maturity, and studies of pre-zygotic processes are often lacking. Aims This study investigates the suitability of controlled pollination for a potential forestry plantation species, Eucalyptus argophloia, by examining pre- and post-zygotic pollination success. Methods Pollen tube development, capsule set and seed set are compared following three-stop pollination, artificially induced protogyny (AIP), AIP unpollinated and open pollination. The fecundity of stored pollen was compared with that of fresh pollen. Results Three-stop pollination, AIP and open pollination had similar numbers of pollen tubes, but AIP unpollinated had none. Open pollination produced significantly more capsules and total number of seeds than the other treatments. There were significantly more seeds per retained capsule for the open pollination and three-stop pollination treatments than for the AIP and AIP unpollinated pollination treatments. There were no significant differences relative to the age of pollen. Conclusions Pre-zygotic success in terms of pollen tubes was similar for open-pollinated, three stop and AIP, but was not reflected in post-zygotic success when the open pollination and three-stop method produced significantly more seeds per retained capsule than the AIP treatments and open pollination yielded more seeds. Capsule set and total seed set for open pollination, and fewer capsules in controlled pollinations, may reflect physical damage to buds because of the small E. argophloia flowers. Suitable alternative breeding strategies other than controlled pollinations are discussed for this species.
Resumo:
High levels of percentage green veneer recovery can be obtained from temperate eucalypt plantations. Recovery traits are affected by site and log position in the stem. Of the post-felling log traits studied, out-of-roundness was the best predictor of green recovery.
Resumo:
Native Mediterranean forests in Australia are dominated by two tree genera, Eucalyptus and Acacia, while Pinus and Eucalyptus dominate plantation forestry. In native forests, there is a high diversity of phloem and wood borers across several families in the Coleoptera and Lepidoptera. In the Coleoptera, cerambycid beetles (Cerambycidae), jewel beetles (Buprestidae), bark, ambrosia and pinhole beetles (Curculionidae) and pinworms (Lymexelidae) are some of the most commonly found beetles attacking eucalypts and acacias. In the Lepidoptera, wood moths (Cossidae), ghost moths (Hepialidae) and borers in the Xyloryctidae (subfamily Xyloryctinae) are most common. In contrast to native forests, there is a much more limited range of native insects present in Australian plantations, particularly in exotic Pinus spp. plantations, although eucalypt plantations do share some borers in common with native forests. This chapter reviews the importance of these borers in Australian forests primarily from an economic perspective (i.e. those species that cause damage to commercial tree species) and highlights a paucity of native forest species that commonly kill trees relative to the large scales regularly seen in North America and Europe.
Resumo:
Forest fires implications in overland flow and soil erosion have been researched for several years. Therefore, is widely known that fires enhance hydrological and geomorphological activity worldwide as also in Mediterranean areas. Soil burn severity has been widely used to describe the impacts of fire on soils, and has being recognized as a decisive factor controlling post-fire erosion rates. However, there is no unique definition of the term and the relationship between soil burn severity and post-fire hydrological and erosion response has not yet been fully established. Few studies have assessed post-fire erosion over multiple years, and the authors are aware of none which assess runoff. Small amount of studies concerning pre-fire management practices were also found. In the case of soil erosion models, the Revised Universal Soil Loss Equation (RUSLE) and the revised Morgan–Morgan–Finney (MMF) are well-known models, but not much information is available as regards their suitability in predicting post-fire soil erosion in forest soils. The lack of information is even more pronounced as regards post-fire rehabilitation treatments. The aim of the thesis was to perform an extensive research under the post fire hydrologic and erosive response subject. By understanding the effect of burn severity in ecosystems and its implications regarding post fire hydrological and erosive responses worldwide. Test the effect of different pre-fire land management practices (unplowed, downslope plowed and contour plowed) and time-since-fire, in the post fire hydrological and erosive response, between the two most common land uses in Portugal (pine and eucalypt). Assess the performance of two widely-known erosion models (RUSLE and Revised MMF), to predict soil erosion rates during first year following two wildfires of distinctive burn severity. Furthermore, to apply these two models considering different post-fire rehabilitation treatments in an area severely affected by fire. Improve model estimations of post-fire runoff and erosion rates in two different land uses (pine and eucalypt) using the revised MMF. To assess these improvements by comparing estimations and measurements of runoff and erosion, in two recently burned sites, as also with their post fire rehabilitation treatments. Model modifications involved: (1) focusing on intra-annual changes in parameters to incorporate seasonal differences in runoff and erosion; and (2) inclusion of soil water repellency in runoff predictions. Additionally, validate these improvements with the application of the model to other pine and eucalypt sites in Central Portugal. The review and meta-analysis showed that fire occurrence had a significant effect on the hydrological and erosive response. However, this effect was only significantly higher with increasing soil burn severity for inter-rill erosion, and not for runoff. This study furthermore highlighted the incoherencies between existing burn severity classifications, and proposed an unambiguous classification. In the case of the erosion plots with natural rainfall, land use factor affected annual runoff while land management affected both annual runoff and erosion amounts significantly. Time-since-fire had an important effect in erosion amounts among unplowed sites, while for eucalypt sites time affected both annual runoff and erosion amounts. At all studied sites runoff coefficients increase over the four years of monitoring. In the other hand, sediment concentration in the runoff, recorded a decrease during the same period. Reasons for divergence from the classic post-fire recovery model were also explored. Short fire recurrence intervals and forest management practices are viewed as the main reasons for the observed severe and continuing soil degradation. The revised MMF model presented reasonable accuracy in the predictions while the RUSLE clearly overestimated the observed erosion rates. After improvements: the revised model was able to predict first-year post-fire plot-scale runoff and erosion rates for both forest types, these predictions were improved both by the seasonal changes in the model parameters; and by considering the effect of soil water repellency on the runoff, individual seasonal predictions were considered accurate, and the inclusion of the soil water repellency in the model also improved the model at this base. The revised MMF model proved capable of providing a simple set of criteria for management decisions about runoff and erosion mitigation measures in burned areas. The erosion predictions at the validation sites attested both to the robustness of the model and of the calibration parameters, suggesting a potential wider application.
Resumo:
Impact of teak and eucalypt monoculture on soils in the highlands of kerala .The thesis is arranged under nine chapters. The first chapter introduces the topic, reviews the literature pertaining to the study and presents the aims and objectives of the study. The second chapter briefly describes the study location. experimental design and sampling methodology. The third chapter deals with physical properties of plantation soils. The fourth and fifth chapters cover the chemical properties and macro- and micro nutrient status in plantation soils. The organic matter fractions in plantation soils are described in sixth chapter. First part of the seventh chapter presents the results of factor analysis and the second part deals with fertility index of plantations. All these chapters are self-contained with separate introduction, materials and methods and results and discussions. A general discussion of the results is included in the eighth chapter. The ninth chapter includes conclusions and summary A study that traces the variation in physical and chemical properties and nutrient status of teak soils with age of plantations, till the end of a rotation period is thus highly pertinent. Such a study, with an adjacent natural forest as a reference stand will not only generate information that will help us to understand the pattern of variation in soil properties, but will also aid us in formulating better management strategies. The data generated by such a study will be more useful if accompanied by information on soil changes following a short rotation plantation crop. As Eucalypt, a short rotation crop is the second major plantation crop in Kerala, it was chosen for the study.
Resumo:
Some Eucalyptus species are widely used as a plantation crop in tropical and subtropical regions. One reason for this is the diversity of end uses, but the main reason is the high level of wood production obtained from commercial plantings. With the advancement of biotechnology it will be possible to expand the geographical area in which eucalypts can be used as commercial plantation crops, especially in regions with current climatic restrictions. Despite the popularity of eucalypts and their increasing range, questions still exist, in both traditional planting areas and in the new regions: Can eucalypts invade areas of native vegetation, causing damage to natural ecosystems biodiversity?The objective of this study it was to assess whether eucalypts can invade native vegetation fragments in proximity to commercial stands, and what factors promote this invasive growth. Thus, three experiments were established in forest fragments located in three different regions of Brazil. Each experiment was composed of 40 plots (1 m(2) each one), 20 plots located at the border between the forest fragment and eucalypts plantation, and 20 plots in the interior of the forest fragments. In each experimental site, the plots were paired by two soil exposure conditions, 10 plots in natural conditions and 10 plots with soil exposure (no plant and no litter). During the rainy season, 2 g of eucalypts seeds were sown in each plot, including Eucalyptus grandis or a hybrid of E. urophylla x E. grandis, the most common commercial eucalypt species planted in the three region. At 15, 30, 45, 90, 180, 270 and 360 days after sowing, we assessed the number of seedlings of eucalypts and the number of seedlings of native species resulting from natural regeneration. Fifteen days after sowing, the greatest number of eucalypts seedlings (37 m(-2)) was observed in the plots with lower luminosity and exposed soil. Also, for native species, it was observed that exposed soil improved natural germination reaching the highest number of 163 seedlings per square meter. Site and soil exposure were the factors that have the greatest influence on seed germination of both eucalypt and native species. However, 270 days after sowing, eucalypt seedlings were not observed at any of the three experimental sites. The result shows the inability of eucalypts to adapt to condition outside of their natural range. However, native species demonstrated their strong capacity for natural regeneration in forest fragments under the same conditions where eucalypts were seeded. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
More than 95% of the reforested area in Brazil is covered by exotic Eucalyptus and Pinus plantations. Native Scolytidae, mostly ambrosia beetles, appear to be rapidly adapting to these exotic trees, and reports of economic damage are becoming frequent. The objectives of our research were to survey, characterize and compare the Scolytidae fauna present in a P. taeda and an E. grandis stand in Telemaco Borba, Parana state, Brazil. Beetles were caught in ethanol baited ESALQ-84 vane traps in weekly collections from July 1995 until July 1997. In all, 87 species were trapped, 62 in the pine and 75 in the eucalypt stand. The most abundant beetle species in the pines were Hypothenemus eruditus, Xyleborinus gracilis, Cryptocarenus sp. and Xylosandrus retusus, while the most frequent were H. eruditus, Cryptocarenus sp., H. obscurus, Ambrosiodmus obliquus, and X. gracilis. In the eucalypt stand, H. eruditus, X. retusus, H. obscurus, X. ferrugineus and Microcorthylus minimus were the most abundant species, and H. eruditus, H. obscurus and M. minimus were the most frequently trapped. The majority of the species, regardless of the forest community, were most active between August (end of winter) and October (mid-spring). Significantly more H. eruditus, X. gracilis, Cryptocarenus sp., Corthylus obliquus, Hypothenemus bolivianus, A. obliquus, Sampsonius dampfi and Xyleborus affinis were trapped in the pine stand, while X. retusus, H. obscurus, X. ferrugineus, Xyleborinus linearicollis, Corthylus sp, and Corthylus convexicauda were caught in higher numbers in the eucalypt stand. Approximately 50% of the species trapped were found in both communities. Morisita's similarity index indicates the composition of the two communities is very similar, suggesting that most of the beetles are polyphagous. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
There are strong uncertainties regarding LAI dynamics in forest ecosystems in response to climate change. While empirical growth & yield models (G&YMs) provide good estimations of tree growth at the stand level on a yearly to decennial scale, process-based models (PBMs) use LAI dynamics as a key variable for enabling the accurate prediction of tree growth over short time scales. Bridging the gap between PBMs and G&YMs could improve the prediction of forest growth and, therefore, carbon, water and nutrient fluxes by combining modeling approaches at the stand level.Our study aimed to estimate monthly changes of leaf area in response to climate variations from sparse measurements of foliage area and biomass. A leaf population probabilistic model (SLCD) was designed to simulate foliage renewal. The leaf population was distributed in monthly cohorts, and the total population size was limited depending on forest age and productivity. Foliage dynamics were driven by a foliation function and the probabilities ruling leaf aging or fall. Their formulation depends on the forest environment.The model was applied to three tree species growing under contrasting climates and soil types. In tropical Brazilian evergreen broadleaf eucalypt plantations, the phenology was described using 8 parameters. A multi-objective evolutionary algorithm method (MOEA) was used to fit the model parameters on litterfall and LAI data over an entire stand rotation. Field measurements from a second eucalypt stand were used to validate the model. Seasonal LAI changes were accurately rendered for both sites (R-2 = 0.898 adjustment, R-2 = 0.698 validation). Litterfall production was correctly simulated (R-2 = 0.562, R-2 = 0.4018 validation) and may be improved by using additional validation data in future work. In two French temperate deciduous forests (beech and oak), we adapted phenological sub-modules of the CASTANEA model to simulate canopy dynamics, and SLCD was validated using LAI measurements. The phenological patterns were simulated with good accuracy in the two cases studied. However, IA/max was not accurately simulated in the beech forest, and further improvement is required.Our probabilistic approach is expected to contribute to improving predictions of LAI dynamics. The model formalism is general and suitable to broadleaf forests for a large range of ecological conditions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The rationalization of forest harvesting and minimization costs is a constant search by the managers involved in this process, making them decide practices which are economically viable to optimize that operation. This study aimed to evaluate technically and economically the performance of feller-buncher and the forest processor in stands of eucalypts in first cut. The technique analysis included time and movements, productivity, efficiency operational and mechanical availability. The economic analysis included the parameters operational cost, harvesting cost and energy consumption. Aiming the optimization the cost of forest harvesting, the system composed by feller-buncher and processor forest presented itself as a technically and economically viable alternative to harvesting eucalypt in first cut or stands that do not have bifurcated trees.
Resumo:
Shoot biomass and lignotuber size of seedlings of three eucalypt species, Eucalyptus acmenoides Schauer, E. siderophloia Benth. and Corymbia variegata [syn. E. maculata (F. Muell.)K. D. Hill and L. A. S. Johnson], were measured for glasshouse-grown seedlings established under two water and nutrient regimes. Seedlings were subjected to shoot removal (clipping) at ages from 9 to 19 weeks, and transferred to the high water treatment for a further 8 weeks to assess shoot emergence from lignotubers. Seedling shoot biomass was greater in both the high than the low nutrient and water treatments, but lignotuber diameter was not affected significantly. C. variegata seedlings had the largest lignotuber diameters, followed by E. siderophloia and E. acmenoides, respectively. Although growth of shoots was influenced by nutrient availability, results suggest that species differences in the growth of lignotubers was less affected. It is suggested that lignotuber growth was strongly influenced by genotype. More than 70% of C. variegata seedlings clipped at 9 weeks sprouted, compared with only 5 and 10% of seedlings of E. siderophloia and E. acmenoides, respectively. All C. variegata seedlings sprouted after being clipped at 19 weeks, but < 80% of E. siderophloia and < 60% of E. acmenoides sprouted when clipped at the same age. It was concluded that seedlings forming part of the regeneration stratum in dry sclerophyll forests need to be protected from damage for at least 4 months (for C. variegata) or at least 6 months (for E. siderophloia and E. acmenoides) if they are to survive by sprouting from lignotubers.
Resumo:
The loss and fragmentation of forest habitats by human land use are recognised as important factors influencing the decline of forest-dependent fauna. Mammal species that are dependent upon forest habitats are particularly sensitive to habitat loss and fragmentation because they have highly specific habitat requirements, and in many cases have limited ability to move through and utilise the land use matrix. We addressed this problem using a case study of the koala (Phascolarctos cinereus) surveyed in a fragmented rural-urban landscape in southeast Queensland, Australia. We applied a logistic modelling and hierarchical partitioning analysis to determine the importance of forest area and its configuration relative to site (local) and patch-level habitat variables. After taking into account spatial auto-correlation and the year of survey, we found koala occurrence increased with the area of all forest habitats, habitat patch size and the proportion of primary Eucalyptus tree species; and decreased with mean nearest neighbour distance between forest patches, the density of forest patches, and the density of sealed roads. The difference between the effect of habitat area and configuration was not as strong as theory predicts, with the configuration of remnant forest becoming increasingly important as the area of forest habitat declines. We conclude that the area of forest, its configuration across the landscape, as well as the land use matrix, are important determinants of koala occurrence, and that habitat configuration should not be overlooked in the conservation of forest-dependent mammals, such as the koala. We highlight the implications of these findings for koala conservation. (c) 2006 Elsevier Ltd. All rights reserved.