953 resultados para ethanol as fuel


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As consumers continue to be concerned about the future of sustainable agriculture and the scarcity of natural resources, biofuels can be an important component of the "people" solution through job creation, development and interiorizing economic activities of a country through moving money from cities into rural areas. The Brazilian sugarcane industry is well developed in terms of corporate social responsibility and can serve as an example for other countries such as Africa. The objective of this article is to show how sugar cane can contribute to the development of Africa by producing renewable fuel for use in booming African cities. A supply of sugar can be developed for use in local markets and exports. Other opportunities exist to produce bioelectricity from the process of burning the bagasse and other new products such as plastic and diesel. In the case of Ethanol, this fuel has proven to be the most efficient in competing with gasoline in the last 40 years, and Africa may gain with a strategic plan on ethanol.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Twenty-three non-methane hydrocarbons were captured from the exhaust of a car operating on unleaded petrol (ULP) and 10% ethanol fuels at steady speed on a chassis dynamometer. The compounds were identified and quantified by GC/MS/FID and their emission concentrations at 60 km/h, 80km/h and idle speed were evaluated. The most abundant compounds in the exhaust included n-hexane, n-heptane, benzene, toluene, ethyl benzene, m- and p-xylenes, and methylcyclopentane. Because of the large number of compounds involved, no attempt was made to compare the emission concentrations of the compounds. Rather the sum of the emission concentrations for the suite of compounds identified was compared when the car was powered by ULP and 10% ethanol fuel. It was evident from the results that the emission concentrations and factors were generally higher with ULP than with 10% ethanol fuel. The total emission concentrations with the ULP fuel were 2.8, 4.2 and 2.6 times the corresponding values for the 10% ethanol fuel at 60km/h, 80km/h and idle speed, respectively. The implications of the results on the environment are discussed in the paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work reports the measured spray structure and droplet size distributions of ethanol-gasoline blends for a low-pressure, multi-hole, port fuel injector (PFI). This study presents previously unavailable data for this class of injectors which are widely used in automotive applications. Specifically, gasoline, ethanol, and gasoline-ethanol blends containing 10%, 20% and 50% ethanol were studied using laser backlight imaging, and particle/droplet image analysis (PDIA) techniques. The fuel mass injected, spray structure and tip penetrations, droplet size distributions, and Sauter mean diameter were determined for the blends, at two different injection pressures. Results indicate that the gasoline and ethanol sprays have similar characteristics in terms of spray progression and droplet sizes in spite of the large difference in viscosity. It appears that the complex mode of atomization utilized in these injectors involving interaction of multiple fuel jets is fairly insensitive to the fuel viscosity over a range of values. This result has interesting ramifications for existing gasoline fuel systems which need to handle blends and even pure ethanol, which is one of the renewable fuels of the future. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Highly active PtSn/C catalyst was prepared by a polyol method. The catalyst was reduced in H-2/Ar atmosphere at 600 degreesC for 2 h in order to obtain different metallic phase. TEM images show uniform dispersion of spherical metal nanoparticles with average diameters of 1.8 and 3.9 nm for the as-prepared and treated catalysts, respectively. UV-vis spectrophotometry is employed to monitor the preparation process and the results indicate that Pt-Sn complex formed once the precursors of Pt and Sn were mixed together. The structure properties of the samples were characterized using X-ray diffraction. The results show that after reduction, the catalyst tends to form PtSn alloy. TPR experiment results show that Sn exists in multivalent state in the as-prepared sample while only zero-valence Sn was detected in the treated sample, while it could not be excluded that the multivalent tin existed in the treated sample. Cyclic voltammetry (CV) technique and single direct ethanol fuel cell (DEFC) tests indicate that the as-prepared catalyst possesses superior catalytic activity for ethanol oxidation to the treated sample. The results suggest that Pt and multivalent Sn are the active species for ethanol oxidation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work, several carbon supported PtSn and PtSnRu catalysts were prepared with different atomic ratios and tested in direct ethanol fuel cells (DEFC) operated at lower temperature (T=90 degreesC). XRD and TEM results indicate that all of these catalysts consist of uniform nano-sized particles of narrow distribution and the average particle sizes are always less than 3.0 nm. As the content of Sn increases, the Pt lattice parameter becomes longer. Single direct ethanol fuel cell tests were used to evaluate the performance of carbon supported PtSn catalysts for ethanol electro-oxidation. It was found that the addition of Sn can enhance the activity towards ethanol electro-oxidation. It is also found that a single DEFC of Pt/Sn atomic ratioless than or equal to2, "Pt1Sn1/C, Pt3Sn2/C, and Pt2Sn1/C" shows better performance than those with Pt3Sn1/C and Pt4Sn1/C. But even adopting the least active PtSn catalyst, Pt4Sn1/C, the DEFC also exhibits higher performance than that with the commercial Pt1Ru1/C, which is dominatingly used in PEMFC at present as anode catalyst for both methanol electro-oxidation and CO-tolerance. At 90 degreesC, the DEFC exhibits the best performance when Pt2Sn1/C is adopted as anode catalysts. This distinct difference in DEFC performance between the catalysts examined here is attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and Sn. It is thought that -OHads, Surface Pt active sites and the ohmic effect of PtSn/C catalyst determines the electro-oxidation activity of PtSn catalysts with different Pt/Sn ratios. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work several Pt-based anode catalysts supported on carbon XC-72R were prepared with a novel method and characterized by means of XRD, TEM and XPS analysis. It was found that all these catalysts are consisted of uniform nanosized particles with sharp distribution and Pt lattice parameter decreases with the addition of Ru or Pd and increases with the addition of Sn or W. Cyclic voltammetry (CV) measurements and single direct ethanol fuel cell (DEFC) tests jointly showed that the presence of Sn, Ru and W enhances the activity of Pt towards ethanol electro-oxidation in the following order: Pt1Sn1/C > Pt1Ru1/C > Pt1W1/C > Pt1Pd1/C > Pt/C. Moreover, Pt1Ru1/C further modified by W and Mo showed improved ethanol electro-oxidation activity, but its DEFC performance was found to be inferior to that measured for Pt1Sn1/C. Under this respect, several PtSn/C catalysts with different Pt/Sn atomic ratio were also identically prepared and characterized and their direct ethanol fuel cell performances were evaluated. It was found that the single direct ethanol fuel cell having Pt1Sn1/C or Pt3Sn2/C or Pt2Sn1/C as anode catalyst showed better performances than those with Pt3Sn1/C or Pt4Sn1/C. It was also found that the latter two cells exhibited higher performances than the single cell using Pt1Ru1/C, which is exclusively used in PEMFC as anode catalyst for both methanol electro-oxidation and CO-tolerance. This distinct difference in DEFC performance between the catalysts examined here would be attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and additives. It is thought that an amount of -OHads, an amount of surface Pt active sites and the conductivity effect of PtSn/C catalysts would determine the activity of PtSn/C with different Pt/Sn ratios. At lower temperature values or at low current density regions where the electro-oxidation of ethanol is considered not so fast and its chemisorption is not the rate-determining step, the Pt3Sn2/C seems to be more suitable for the direct ethanol fuel cell. At 75 degreesC, the single ethanol fuel cell with Pt3Sn2/C as anode catalyst showed a comparable performance to that with Pt2Sn1/C, but at higher temperature of 90 degreesC, the latter presented much better performance. It is thought from a practical point of view that Pt2Sn1/C, supplying sufficient -OHads and having adequate active Pt sites and acceptable ohmic effect, could be the appropriate anode catalyst for DEFC. (C) 2003 Elsevier B.V. All rights reserved.