997 resultados para estimated parameters
Resumo:
Rosin is a natural product from pine forests and it is used as a raw material in resinate syntheses. Resinates are polyvalent metal salts of rosin acids and especially Ca- and Ca/Mg- resinates find wide application in the printing ink industry. In this thesis, analytical methods were applied to increase general knowledge of resinate chemistry and the reaction kinetics was studied in order to model the non linear solution viscosity increase during resinate syntheses by the fusion method. Solution viscosity in toluene is an important quality factor for resinates to be used in printing inks. The concept of critical resinate concentration, c crit, was introduced to define an abrupt change in viscosity dependence on resinate concentration in the solution. The concept was then used to explain the non-inear solution viscosity increase during resinate syntheses. A semi empirical model with two estimated parameters was derived for the viscosity increase on the basis of apparent reaction kinetics. The model was used to control the viscosity and to predict the total reaction time of the resinate process. The kinetic data from the complex reaction media was obtained by acid value titration and by FTIR spectroscopic analyses using a conventional calibration method to measure the resinate concentration and the concentration of free rosin acids. A multivariate calibration method was successfully applied to make partial least square (PLS) models for monitoring acid value and solution viscosity in both mid-infrared (MIR) and near infrared (NIR) regions during the syntheses. The calibration models can be used for on line resinate process monitoring. In kinetic studies, two main reaction steps were observed during the syntheses. First a fast irreversible resination reaction occurs at 235 °C and then a slow thermal decarboxylation of rosin acids starts to take place at 265 °C. Rosin oil is formed during the decarboxylation reaction step causing significant mass loss as the rosin oil evaporates from the system while the viscosity increases to the target level. The mass balance of the syntheses was determined based on the resinate concentration increase during the decarboxylation reaction step. A mechanistic study of the decarboxylation reaction was based on the observation that resinate molecules are partly solvated by rosin acids during the syntheses. Different decarboxylation mechanisms were proposed for the free and solvating rosin acids. The deduced kinetic model supported the analytical data of the syntheses in a wide resinate concentration region, over a wide range of viscosity values and at different reaction temperatures. In addition, the application of the kinetic model to the modified resinate syntheses gave a good fit. A novel synthesis method with the addition of decarboxylated rosin (i.e. rosin oil) to the reaction mixture was introduced. The conversion of rosin acid to resinate was increased to the level necessary to obtain the target viscosity for the product at 235 °C. Due to a lower reaction temperature than in traditional fusion synthesis at 265 °C, thermal decarboxylation is avoided. As a consequence, the mass yield of the resinate syntheses can be increased from ca. 70% to almost 100% by recycling the added rosin oil.
Resumo:
Direct leaching is an alternative to conventional roast-leach-electrowin (RLE) zinc production method. The basic reaction of direct leach method is the oxidation of sphalerite concentrate in acidic liquid by ferric iron. The reaction mechanism and kinetics, mass transfer and current modifications of zinc concentrate direct leaching process are considered. Particular attention is paid to the oxidation-reduction cycle of iron and its role in direct leaching of zinc concentrate, since it can be one of the limiting factors of the leaching process under certain conditions. The oxidation-reduction cycle of iron was experimentally studied with goal of gaining new knowledge for developing the direct leaching of zinc concentrate. In order to obtain this aim, ferrous iron oxidation experiments were carried out. Affect of such parameters as temperature, pressure, sulfuric acid concentration, ferrous iron and copper concentrations was studied. Based on the experimental results, mathematical model of the ferrous iron oxidation rate was developed. According to results obtained during the study, the reaction rate orders for ferrous iron concentration, oxygen concentration and copper concentration are 0.777, 0.652 and 0.0951 respectively. Values predicted by model were in good concordance with the experimental results. The reliability of estimated parameters was evaluated by MCMC analysis which showed good parameters reliability.
Resumo:
Using the MIT Serial Link Direct Drive Arm as the main experimental device, various issues in trajectory and force control of manipulators were studied in this thesis. Since accurate modeling is important for any controller, issues of estimating the dynamic model of a manipulator and its load were addressed first. Practical and effective algorithms were developed fro the Newton-Euler equations to estimate the inertial parameters of manipulator rigid-body loads and links. Load estimation was implemented both on PUMA 600 robot and on the MIT Serial Link Direct Drive Arm. With the link estimation algorithm, the inertial parameters of the direct drive arm were obtained. For both load and link estimation results, the estimated parameters are good models of the actual system for control purposes since torques and forces can be predicted accurately from these estimated parameters. The estimated model of the direct drive arm was them used to evaluate trajectory following performance by feedforward and computed torque control algorithms. The experimental evaluations showed that the dynamic compensation can greatly improve trajectory following accuracy. Various stability issues of force control were studied next. It was determined that there are two types of instability in force control. Dynamic instability, present in all of the previous force control algorithms discussed in this thesis, is caused by the interaction of a manipulator with a stiff environment. Kinematics instability is present only in the hybrid control algorithm of Raibert and Craig, and is caused by the interaction of the inertia matrix with the Jacobian inverse coordinate transformation in the feedback path. Several methods were suggested and demonstrated experimentally to solve these stability problems. The result of the stability analyses were then incorporated in implementing a stable force/position controller on the direct drive arm by the modified resolved acceleration method using both joint torque and wrist force sensor feedbacks.
Resumo:
There is increasing concern about soil enrichment with K+ and subsequent potential losses following long-term application of poor quality water to agricultural land. Different models are increasingly being used for predicting or analyzing water flow and chemical transport in soils and groundwater. The convective-dispersive equation (CDE) and the convective log-normal transfer function (CLT) models were fitted to the potassium (K+) leaching data. The CDE and CLT models produced equivalent goodness of fit. Simulated breakthrough curves for a range of CaCl2 concentration based on parameters of 15 mmol l(-1) CaCl2 were characterised by an early peak position associated with higher K+ concentration as the CaCl2 concentration used in leaching experiments decreased. In another method, the parameters estimated from 15 mmol l(-1) CaCl2 solution were used for all other CaCl2 concentrations, and the best value of retardation factor (R) was optimised for each data set. A better prediction was found. With decreasing CaCl2 concentration the value of R is required to be more than that measured (except for 10 mmol l(-1) CaCl2), if the estimated parameters of 15 mmol l(-1) CaCl2 are used. The two models suffer from the fact that they need to be calibrated against a data set, and some of their parameters are not measurable and cannot be determined independently.
Resumo:
Details about the parameters of kinetic systems are crucial for progress in both medical and industrial research, including drug development, clinical diagnosis and biotechnology applications. Such details must be collected by a series of kinetic experiments and investigations. The correct design of the experiment is essential to collecting data suitable for analysis, modelling and deriving the correct information. We have developed a systematic and iterative Bayesian method and sets of rules for the design of enzyme kinetic experiments. Our method selects the optimum design to collect data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. The rules select features of the design such as the substrate range and the number of measurements. We show here that this method can be directly applied to the study of other important kinetic systems, including drug transport, receptor binding, microbial culture and cell transport kinetics. It is possible to reduce the errors in the estimated parameters and, most importantly, increase the efficiency and cost-effectiveness by reducing the necessary amount of experiments and data points measured. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.
Resumo:
Although difference-stationary (DS) and trend-stationary (TS) processes have been subject to considerable analysis, there are no direct comparisons for each being the data-generation process (DGP). We examine incorrect choice between these models for forecasting for both known and estimated parameters. Three sets of Monte Carlo simulations illustrate the analysis, to evaluate the biases in conventional standard errors when each model is mis-specified, compute the relative mean-square forecast errors of the two models for both DGPs, and investigate autocorrelated errors, so both models can better approximate the converse DGP. The outcomes are surprisingly different from established results.
Resumo:
We used a light-use efficiency model of photosynthesis coupled with a dynamic carbon allocation and tree-growth model to simulate annual growth of the gymnosperm Callitris columellaris in the semi-arid Great Western Woodlands, Western Australia, over the past 100 years. Parameter values were derived from independent observations except for sapwood specific respiration rate, fine-root turnover time, fine-root specific respiration rate and the ratio of fine-root mass to foliage area, which were estimated by Bayesian optimization. The model reproduced the general pattern of interannual variability in radial growth (tree-ring width), including the response to the shift in precipitation regimes that occurred in the 1960s. Simulated and observed responses to climate were consistent. Both showed a significant positive response of tree-ring width to total photosynthetically active radiation received and to the ratio of modeled actual to equilibrium evapotranspiration, and a significant negative response to vapour pressure deficit. However, the simulations showed an enhancement of radial growth in response to increasing atmospheric CO2 concentration (ppm) ([CO2]) during recent decades that is not present in the observations. The discrepancy disappeared when the model was recalibrated on successive 30-year windows. Then the ratio of fine-root mass to foliage area increases by 14% (from 0.127 to 0.144 kg C m-2) as [CO2] increased while the other three estimated parameters remained constant. The absence of a signal of increasing [CO2] has been noted in many tree-ring records, despite the enhancement of photosynthetic rates and water-use efficiency resulting from increasing [CO2]. Our simulations suggest that this behaviour could be explained as a consequence of a shift towards below-ground carbon allocation.
Resumo:
Although estimation of turbulent transport parameters using inverse methods is not new, there is little evaluation of the method in the literature. Here, it is shown that extended observation of the broad scale hydrography by Argo provides a path to improved estimates of regional turbulent transport rates. Results from a 20 year ocean state estimate produced with the ECCO v4 non-linear inverse modeling framework provide supporting evidence. Turbulent transport parameter maps are estimated under the constraints of fitting the extensive collection of Argo profiles collected through 2011. The adjusted parameters dramatically reduce misfits to in situ profiles as compared with earlier ECCO solutions. They also yield a clear reduction in the model drift away from observations over multi-century long simulations, both for assimilated variables (temperature and salinity) and independent variables (bio-geochemical tracers). Despite the minimal constraints imposed specifically on the estimated parameters, their geography is physically plausible and exhibits close connections with the upper ocean ocean stratification as observed by Argo. The estimated parameter adjustments furthermore have first order impacts on upper-ocean stratification and mixed layer depths over 20 years. These results identify the constraint of fitting Argo profiles as an effective observational basis for regional turbulent transport rates. Uncertainties and further improvements of the method are discussed.
Resumo:
In 2013, an opportunity arose in England to develop an agri-environment package for wild pollinators, as part of the new Countryside Stewardship scheme launched in 2015. It can be understood as a 'policy window', a rare and time-limited opportunity to change policy, supported by a narrative about pollinator decline and widely supported mitigating actions. An agri-environment package is a bundle of management options that together supply sufficient resources to support a target group of species. This paper documents information that was available at the time to develop such a package for wild pollinators. Four questions needed answering: (1) Which pollinator species should be targeted? (2) Which resources limit these species in farmland? (3) Which management options provide these resources? (4) What area of each option is needed to support populations of the target species? Focussing on wild bees, we provide tentative answers that were used to inform development of the package. There is strong evidence that floral resources can limit wild bee populations, and several sources of evidence identify a set of agri-environment options that provide flowers and other resources for pollinators. The final question could only be answered for floral resources, with a wide range of uncertainty. We show that the areas of some floral resource options in the basic Wild Pollinator and Farmland Wildlife Package (2% flower-rich habitat and 1 km flowering hedgerow), are sufficient to supply a set of six common pollinator species with enough pollen to feed their larvae at lowest estimates, using minimum values for estimated parameters where a range was available. We identify key sources of uncertainty, and stress the importance of keeping the Package flexible, so it can be revised as new evidence emerges about how to achieve the policy aim of supporting pollinators on farmland.
Resumo:
This thesis consists of a summary and five self-contained papers addressing dynamics of firms in the Swedish wholesale trade sector. Paper [1] focuses upon determinants of new firm formation in the Swedish wholesale trade sector, using two definitions of firms’ relevant markets, markets defined as administrative areas, and markets based on a cost minimizing behavior of retailers. The paper shows that new entering firms tend to avoid regions with already high concentration of other firms in the same branch of wholesaling, while right-of-the-center local government and quality of the infrastructure have positive impacts upon entry of new firms. The signs of the estimated coefficients remain the same regardless which definition of relevant market is used, while the size of the coefficients is generally higher once relevant markets delineated on the cost-minimizing assumption of retailers are used. Paper [2] analyses determinant of firm relocation, distinguishing between the role of the factors in in-migration municipalities and out-migration municipalities. The results of the analysis indicate that firm-specific factors, such as profits, age and size of the firm are negatively related to the firm’s decision to relocate. Furthermore, firms seems to be avoiding municipalities with already high concentration of firms operating in the same industrial branch of wholesaling and also to be more reluctant to leave municipalities governed by right-of-the- center parties. Lastly, firms seem to avoid moving to municipalities characterized with high population density. Paper [3] addresses determinants of firm growth, adopting OLS and a quantile regression technique. The results of this paper indicate that very little of the firm growth can be explained by the firm-, industry- and region-specific factors, controlled for in the estimated models. Instead, the firm growth seems to be driven by internal characteristics of firms, factors difficult to capture in conventional statistics. This result supports Penrose’s (1959) suggestion that internal resources such as firm culture, brand loyalty, entrepreneurial skills, and so on, are important determinants of firm growth rates. Paper [4] formulates a forecasting model for firm entry into local markets and tests this model using data from the Swedish wholesale industry. The empirical analysis is based on directly estimating the profit function of wholesale firms and identification of low- and high-return local markets. The results indicate that 19 of 30 estimated models have more net entry in high-return municipalities, but the estimated parameters is only statistically significant at conventional level in one of our estimated models, and then with unexpected negative sign. Paper [5] studies effects of firm relocation on firm profits of relocating firms, employing a difference-in-difference propensity score matching. Using propensity score matching, the pre-relocalization differences between relocating and non-relocating firms are balanced, while the difference-in-difference estimator controls for all time-invariant unobserved heterogeneity among firms. The results suggest that firms that relocate increase their profits significantly, in comparison to what the profits would be had the firms not relocated. This effect is estimated to vary between 3 to 11 percentage points, depending on the length of the analyzed period.
Resumo:
Excessive labor turnover may be considered, to a great extent, an undesirable feature of a given economy. This follows from considerations such as underinvestment in human capital by firms. Understanding the determinants and the evolution of turnover in a particular labor market is therefore of paramount importance, including policy considerations. The present paper proposes an econometric analysis of turnover in the Brazilian labor market, based on a partial observability bivariate probit model. This model considers the interdependence of decisions taken by workers and firms, helping to elucidate the causes that lead each of them to end an employment relationship. The Employment and Unemployment Survey (PED) conducted by the State System of Data Analysis (SEADE) and by the Inter-Union Department of Statistics and Socioeconomic Studies (DIEESE) provides data at the individual worker level, allowing for the estimation of the joint probabilities of decisions to quit or stay on the job on the worker’s side, and to maintain or fire the employee on the firm’s side, during a given time period. The estimated parameters relate these estimated probabilities to the characteristics of workers, job contracts, and to the potential macroeconomic determinants in different time periods. The results confirm the theoretical prediction that the probability of termination of an employment relationship tends to be smaller as the worker acquires specific skills. The results also show that the establishment of a formal employment relationship reduces the probability of a quit decision by the worker, and also the firm’s firing decision in non-industrial sectors. With regard to the evolution of quit probability over time, the results show that an increase in the unemployment rate inhibits quitting, although this tends to wane as the unemployment rate rises.
Resumo:
The oscillations presents in control loops can cause damages in petrochemical industry. Canceling, or even preventing such oscillations, would save up to large amount of dollars. Studies have identified that one of the causes of these oscillations are the nonlinearities present on industrial process actuators. This study has the objective to develop a methodology for removal of the harmful effects of nonlinearities. Will be proposed an parameter estimation method to Hammerstein model, whose nonlinearity is represented by dead-zone or backlash. The estimated parameters will be used to construct inverse models of compensation. A simulated level system was used as a test platform. The valve that controls inflow has a nonlinearity. Results and describing function analysis show an improvement on system response
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The petroleum industry, in consequence of an intense activity of exploration and production, is responsible by great part of the generation of residues, which are considered toxic and pollutants to the environment. Among these, the oil sludge is found produced during the production, transportation and refine phases. This work had the purpose to develop a process to recovery the oil present in oil sludge, in order to use the recovered oil as fuel or return it to the refining plant. From the preliminary tests, were identified the most important independent variables, like: temperature, contact time, solvents and acid volumes. Initially, a series of parameters to characterize the oil sludge was determined to characterize its. A special extractor was projected to work with oily waste. Two experimental designs were applied: fractional factorial and Doehlert. The tests were carried out in batch process to the conditions of the experimental designs applied. The efficiency obtained in the oil extraction process was 70%, in average. Oil sludge is composed of 36,2% of oil, 16,8% of ash, 40% of water and 7% of volatile constituents. However, the statistical analysis showed that the quadratic model was not well fitted to the process with a relative low determination coefficient (60,6%). This occurred due to the complexity of the oil sludge. To obtain a model able to represent the experiments, the mathematical model was used, the so called artificial neural networks (RNA), which was generated, initially, with 2, 4, 5, 6, 7 and 8 neurons in the hidden layer, 64 experimental results and 10000 presentations (interactions). Lesser dispersions were verified between the experimental and calculated values using 4 neurons, regarding the proportion of experimental points and estimated parameters. The analysis of the average deviations of the test divided by the respective training showed up that 2150 presentations resulted in the best value parameters. For the new model, the determination coefficient was 87,5%, which is quite satisfactory for the studied system