192 resultados para epigenetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Workshops are an important part of the IFPA annual meeting. At IFPA Meeting 2010 there were twelve themed workshops, six of which are summarized in this report 1. The immunology workshop focused on normal and pathological functions of the maternal immune system in pregnancy. 2. The transport workshop dealt with regulation of ion and water transport across the syncytiotrophoblast of human placenta. 3. The epigenetics workshop covered DNA methylation and its potential role in regulating gene expression in placental development and disease. 4. The vascular reactivity workshop concentrated on methodological approaches used to study placental vascular function. 5. The workshop on epitheliochorial placentation covered current advances from in vivo and in vitro studies of different domestic species. 6. The proteomics workshop focused on a variety of techniques and procedures necessary for proteomic analysis and how they may be implemented for placental research. (C) 2011 Published by IFPA and Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epigenetic variability is a new mechanism for the study of human microevolution, because it creates both phenotypic diversity within an individual and within population. This mechanism constitutes an important reservoir for adaptation in response to new stimuli and recent studies have demonstrated that selective pressures shape not only the genetic code but also DNA methylation profiles. The aim of this thesis is the study of the role of DNA methylation changes in human adaptive processes, considering the Italian peninsula and macro-geographical areas. A whole-genome analysis of DNA methylation profile across the Italian penisula identified some genes whose methylation levels differ between individuals of different Italian districts (South, Centre and North of Italy). These genes are involved in nitrogen compound metabolism and genes involved in pathogens response. Considering individuals with different macro-geographical origins (individuals of Asians, European and African ancestry) more significant DMRs (differentially methylated regions) were identified and are located in genes involved in glucoronidation, in immune response as well as in cell comunication processes. A "profile" of each ancestry (African, Asian and European) was described. Moreover a deepen analysis of three candidate genes (KRTCAP3, MAD1L and BRSK2) in a cohort of individuals of different countries (Morocco, Nigeria, China and Philippines) living in Bologna, was performed in order to explore genetic and epigenetic diversity. Moreover this thesis have paved the way for the application of DNA methylation for the study of hystorical remains and in particular for the age-estimation of individuals starting from biological samples (such as teeth or blood). Noteworthy, a mathematical model that considered methylation values of DNA extracted from cementum and pulp of living individuals can estimate chronological age with high accuracy (median absolute difference between age estimated from DNA methylation and chronological age was 1.2 years).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary nasal parakeratosis (HNPK), an inherited monogenic autosomal recessive skin disorder, leads to crusts and fissures on the nasal planum of Labrador Retrievers. We performed a genome-wide association study (GWAS) using 13 HNPK cases and 23 controls. We obtained a single strong association signal on chromosome 2 (p(raw) = 4.4×10⁻¹⁴). The analysis of shared haplotypes among the 13 cases defined a critical interval of 1.6 Mb with 25 predicted genes. We re-sequenced the genome of one case at 38× coverage and detected 3 non-synonymous variants in the critical interval with respect to the reference genome assembly. We genotyped these variants in larger cohorts of dogs and only one was perfectly associated with the HNPK phenotype in a cohort of more than 500 dogs. This candidate causative variant is a missense variant in the SUV39H2 gene encoding a histone 3 lysine 9 (H3K9) methyltransferase, which mediates chromatin silencing. The variant c.972T>G is predicted to change an evolutionary conserved asparagine into a lysine in the catalytically active domain of the enzyme (p.N324K). We further studied the histopathological alterations in the epidermis in vivo. Our data suggest that the HNPK phenotype is not caused by hyperproliferation, but rather delayed terminal differentiation of keratinocytes. Thus, our data provide evidence that SUV39H2 is involved in the epigenetic regulation of keratinocyte differentiation ensuring proper stratification and tight sealing of the mammalian epidermis.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epigenetics is the study of heritable changes in gene expression that occur without changes in DNA sequence. It has a role in determining when and where a gene is expressed during development. Perhaps the most well known epigenetic mechanism is DNA methylation whereby cytosines at position 5 in CpG dinucleotides are methylated. Histone modification is another form of epigenetic control, which is quite complex and diverse. Histones and DNA make up the nucleosome which is the structural unit of chromatin which are involved in packaging DNA. Apart from the crucial role epigenetics plays in embryonic development, transcription, chromatin structure, X chromosome inactivation and genomic imprinting, its role in an increasing number of human diseases is more and more recognized. These diseases include cancer, and lung cancer in particular has been increasingly studied for the potential biological role of epigenetic changes with the promise of better and novel diagnostic and therapeutic tools.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements Financial support for composing this article was obtained from the Agriculture and Horticulture Development Board (AHDB, Beef and Lamb), UK. Concept of review was also initiated from discussions originating from EU COST Action FA1201, Epiconcept: Epigenetics and Periconception Environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibrosis is a progressive and potentially fatal process that can occur in numerous organ systems. Characterised by the excessive deposition of extracellular matrix proteins such as collagens and fibronectin, fibrosis affects normal tissue architecture and impedes organ function. Although a considerable amount of research has focused on the mechanisms underlying disease pathogenesis, current therapeutic options do not directly target the pro-fibrotic process. As a result, there is a clear unmet clinical need to develop new agents. Novel findings implicate a role for epigenetic modifications contributing to the progression of fibrosis by alteration of gene expression profiles. This review will focus on DNA methylation; its association with fibroblast differentiation and activation and the consequent buildup of fibrotic scar tissue. The potential use of therapies that modulate this epigenetic pathway for the treatment of fibrosis in several organ systems is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibrosis of any tissue is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal organ function. Although much research has focused on the mechanisms underlying disease pathogenesis, there are still no effective antifibrotic therapies that can reverse, stop or delay the formation of scar tissue in most fibrotic organs. As fibrosis can be described as an aberrant wound healing response, a recent hypothesis suggests that the cells involved in this process gain an altered heritable phenotype that promotes excessive fibrotic tissue accumulation. This article will review the most recent observations in a newly emerging field that links epigenetic modifications to the pathogenesis of fibrosis. Specifically, the roles of DNA methylation and histone modifications in fibrotic disease will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is becoming increasingly apparent that epigenetics plays a crucial role in the cellular response to hypoxia. Such epigenetic regulation may work hand in hand with the hypoxia-induced transcription factor (HIF) family or may contribute in a more substantial way to the maintenance of a hypoxia-adapted cellular phenotype long after HIF has initiated the immediate response pathways. In this article we discuss the current research implicating epigenetic mechanisms in the cellular response to hypoxic environments. This includes; the role of epigenetics in both the stabilization and binding of HIF to its transcriptional targets, the role of histone demethylase enzymes following direct HIF transactivation, and finally, the impact of hypoxic environments on global patterns of histone modifications and DNA methylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Oncobiologia: Mecanismos Moleculares do Cancro, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reviews the concept of Lamarckian inheritance and the use of the term epigenetics in the field of animal genetics. Epigenetics was first coined by Conrad Hal Waddington (1905–1975), who derived the term from the Aristotelian word epigenesis. There exists some controversy around the word epigenetics and its broad definition. It includes any modification of the expression of genes due to factors other than mutation in the DNA sequence. This involves DNA methylation, post-translational modification of histones, but also linked to regulation of gene expression by non-coding RNAs, genome instabilities or any other force that could modify a phenotype. There is little evidence of the existence of transgenerational epigenetic inheritance in mammals, which may commonly be confounded with environmental forces acting simultaneously on an individual, her developing fetus and the germ cell lines of the latter, although it could have an important role in the cellular energetic status of cells. Finally, we review some of the scarce literature on the use of epigenetics in animal breeding programs.