976 resultados para enzyme characterization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The genome of the human pathogen Entamoeba histolytica, a primitive protist, contains non-long terminal repeat retrotransposable elements called EhLINEs. These encode reverse transcriptase and endonuclease required for retrotransposition. The endonuclease shows sequence similarity with bacterial restriction endonucleases. Here we report the salient enzymatic features of one such endonuclease. The kinetics of an EhLINE1-encoded endonuclease catalyzed reaction, determined under steady-state and single-turnover conditions, revealed a significant burst phase followed by a slower steady-state phase, indicating that release of product could be the slower step in this reaction. For circular supercoiled DNA the K-m was 2.6 x 10-8 m and the k(cat) was 1.6 x 10-2 sec-1. For linear E. histolytica DNA substrate the K-m and k(cat) values were 1.3 x 10-8 m and 2.2 x 10-4 sec-1 respectively. Single-turnover reaction kinetics suggested a noncooperative mode of hydrolysis. The enzyme behaved as a monomer. While Mg2+ was required for activity, 60% activity was seen with Mn2+ and none with other divalent metal ions. Substitution of PDX12-14D (a metal-binding motif) with PAX(12-14)D caused local conformational change in the protein tertiary structure, which could contribute to reduced enzyme activity in the mutated protein. The protein underwent conformational change upon the addition of DNA, which is consistent with the known behavior of restriction endonucleases. The similarities with bacterial restriction endonucleases suggest that the EhLINE1-encoded endonuclease was possibly acquired from bacteria through horizontal gene transfer. The loss of strict sequence specificity for nicking may have been subsequently selected to facilitate spread of the retrotransposon to intergenic regions of the E. histolytica genome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The polyamines putrescine, spermidine, and spermine are organic cations that are required for cell growth and differentiation. Ornithine decarboxylase (ODC), the first and rate-limiting enzyme in the polyamine biosynthetic pathway, is a highly regulated enzyme. Methodology and Results: To use this enzyme as a potential drug target, the gene encoding putative ornithine decarboxylase (ODC)-like sequence was cloned from Entamoeba histolytica, a protozoan parasite causing amoebiasis. DNA sequence analysis revealed an open reading frame (ORF) of similar to 1,242 bp encoding a putative protein of 413 amino acids with a calculated molecular mass of 46 kDa and a predicted isoelectric point of 5.61. The E. histolytica putative ODC-like sequence has 33% sequence identity with human ODC and 36% identity with the Datura stramonium ODC. The ORF is a single-copy gene located on a 1.9-Mb chromosome. The recombinant putative ODC protein (48 kDa) from E. histolytica was heterologously expressed in Escherichia coli. Antiserum against recombinant putative ODC protein detected a band of anticipated size similar to 46 kDa in E. histolytica whole-cell lysate. Difluoromethylornithine (DFMO), an enzyme-activated irreversible inhibitor of ODC, had no effect on the recombinant putative ODC from E. histolytica. Comparative modeling of the three-dimensional structure of E. histolytica putative ODC shows that the putative binding site for DFMO is disrupted by the substitution of three amino acids-aspartate-332, aspartate-361, and tyrosine-323-by histidine-296, phenylalanine-305, and asparagine-334, through which this inhibitor interacts with the protein. Amino acid changes in the pocket of the E. histolytica enzyme resulted in low substrate specificity for ornithine. It is possible that the enzyme has evolved a novel substrate specificity. Conclusion: To our knowledge this is the first report on the molecular characterization of putative ODC-like sequence from E. histolytica. Computer modeling revealed that three of the critical residues required for binding of DFMO to the ODC enzyme are substituted in E. histolytica, resulting in the likely loss of interactions between the enzyme and DFMO.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Angiotensin converting enzyme (ACE) catalyzes the conversion of angiotensin I (Ang I) to angiotensin II (Ang II). ACE also cleaves the terminal dipeptide of vasodilating hormone bradykinin (a nonapeptide) to inactivate this hormone. Therefore, inhibition of ACE is generally used as one of the methods for the treatment of hypertension. `Oxidative stress' is another disease state caused by an imbalance in the production of oxidants and antioxidants. A number of studies suggest that hypertension and oxidative stress are interdependent. Therefore, ACE inhibitors having antioxidant property are considered beneficial for the treatment of hypertension. As selenium compounds are known to exhibit better antioxidant behavior than their sulfur analogues, we have synthesized a number of selenium analogues of captopril, an ACE inhibitor used as an antihypertensive drug. The selenium analogues of captopril not only inhibit ACE activity but also effectively scavenge peroxynitrite, a strong oxidant found in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human somatic angiotensin I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypeptidase, is central to the regulation of the renin-angiotensin aldosterone system. It is a well-known target for combating hypertension and related cardiovascular diseases. In a recent study by Bhuyan and Mugesh [Org. Biomol. Chem. (2011) 9, 1356-1365], it was shown that the selenium analogues of captopril (a well-known clinical inhibitor of ACE) not only inhibit ACE, but also protect against peroxynitrite-mediated nitration of peptides and proteins. Here, we report the crystal structures of human testis ACE (tACE) and a homologue of ACE, known as AnCE, from Drosophila melanogaster in complex with the most promising selenium analogue of captopril (SeCap) determined at 2.4 and 2.35 angstrom resolution, respectively. The inhibitor binds at the active site of tACE and AnCE in an analogous fashion to that observed for captopril and provide the first examples of a protein-selenolate interaction. These new structures of tACE-SeCap and AnCE-SeCap inhibitor complexes presented here provide important information for further exploration of zinc coordinating selenium-based ACE inhibitor pharmacophores with significant antioxidant activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have reported previously that the long-term survival of Mycobacterium smegmatis is facilitated by a dual-active enzyme MSDGC-1 (renamed DcpA), which controls the cellular turnover of cyclic diguanosine monophosphate (c-di-GMP). Most mycobacterial species possess at least a single copy of a DcpA orthologue that is highly conserved in terms of sequence similarity and domain architecture. Here, we show that DcpA exists in monomeric and dimeric forms. The dimerization of DcpA is due to non-covalent interactions between two protomers that are arranged in a parallel orientation. The dimer shows both synthesis and hydrolysis activities, whereas the monomer shows only hydrolysis activity. In addition, we have shown that DcpA is associated with the cytoplasmic membrane and exhibits heterogeneous cellular localization with a predominance at the cell poles. Finally, we have also shown that DcpA is involved in the change in cell length and colony morphology of M. smegmatis. Taken together, our study provides additional evidence about the role of the bifunctional protein involved in c-di-GMP signalling in M. smegmatis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trimeresurus stejnegeri venom, which contains TSV-PA (a specific plasminogen activator sharing 60-70% sequence homology with venom fibrinogen-clotting enzymes), also possesses fibrinogen-clotting activity in vitro. A fibrinogen-clotting enzyme (stejnobin) has been purified to homogeneity by gel filtration and ion-exchange chromatography on a Mono-Q column. It is a single-chain glycoprotein with a mol. wt of 44,000. The NH2-terminal amino acid sequence of stejnobin shows great homology with venom fibrinogen-clotting enzymes and TSV-PA. Like TSV-PA, stejnobin was able to hydrolyse several chromogenic substrates. Comparative study of substrate specificities of stejnobin and other venom proteases purified in our laboratory was carried out on five chromogenic substrates. Stejnobin clotted human fibrinogen with a specific activity of 122 NIH thrombin-equivalent units/mg protein. However, stejnobin did not act on other blood coagulation factors, such as factor X, prothrombin and plasminogen. Diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride inhibited its activity, whereas ethylenediamine tetracetic acid had no effect on it, indicating that it is a serine protease. Although stejnobin showed strong immunological cross-reaction with polyclonal antibodies raised against TSV-PA, it was interesting to observe that, unlike the case of TSV-PA, these antibodies did not inhibit the amidolytic and fibrinogen-clotting activities of stejnobin. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

From the venom of Trimeresurus jerdonii, a distinct thrombin-like enzyme, called jerdonobin. was purified by DEAF A-25 ion-exchange chromatography, Sephadex G-75 gel filtration, and fast protein liquid chromatography (FPLC). SDS-PAGE analysis of this enzyme shows that it consists of a single polypeptide chain with a molecular weight of 38,000. The NH2-terminal amino acid sequence of jerdonobin has great homology with venom thrombin-like enzymes documented. Jerdonobin is able to hydrolyze several chromogenic substrates. The enzyme directly clots fibrinogen with an activity of 217 NIH units/mg, The fibrinopeptides released, identified by HPLC consisted of fibrinopeptide A and a small amount of fibrinopepide B. The activities of the enzyme were inhibited by phenylmethylsulfonyl fluoride (PMSF) and p-nitrophenyl-p-guanidinobenzoate (NPGB). However, metal chelator (EDTA) had no effect on it. indicating it is venom serine protease. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A fibrinogen-clotting enzyme designed as jerdonobin-II was isolated from the venom of Trimeresurus jerdonii. It differed in molecular weight and N-terminal sequence with the previously isolated jerdonobin, a thrombin-like enzyme from the same venom. The enzyme consists of a single polypeptide chain with molecular weights of 30,000 and 32,000 under non-reducing and reducing conditions, respectively. Jerdonobin-II showed weak fibrinogen clotting activity and its activity unit on fibrinogen was calculated to be less than one unit using human thrombin as standard. The precursor protein sequence of jerodonobin-II was deduced from cloned cDNA sequence. The sequence shows high similarity (identity = 89%) to TSV-PA, a specific plasminogen activator from venom of T stejnegeri. Despite of the sequence similarity, jerdonobin-II was found devoid of plasminogen activating effect. Sequence alignment analysis suggested that the replacement of Lys(239) in TSV-PA to Gln(239) in jerdonobin-II might play an important role on their plasminogen activating activity difference. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Capillary electrophoresis with electrochemiluminescene detection was used to characterize procaine hydrolysis as a probe for butyrylcholinesterase by in vitro procaine metabolism in plasma with butyrylcholinesterase acting as bioscavenger. Procaine and its metabolite N,N-diethylethanolamine were separated at 16 kV and then detected at 1.25 V in the presence of 5.0 mM Ru(bpy)(3)(2+), with the detection limits of 2.4 x 10(-7) and 2.0 x 10(-8) mol/L (S/N=3), respectively. The Michaelis constant K-m value was 1.73 x 10(-4) mol/L and the maximum velocity V-max was 1.62 x 10(-6) mol/L/min. Acetylcholine bromide and choline chloride presented inhibition effects on the enzymatic cleavage of procaine, with the 50% inhibition concentration (IC50) of 6.24 x 10(-3) and 2.94 x 10(-4) mol/L.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Catalase is an important antioxidant protein that protects organisms against various oxidative stresses by eliminating hydrogen peroxide. The full-length catalase cDNA of Chinese shrimp Fenneropenaeus chinensis was cloned from the hepatopancreas using degenerate primers by the method of 3' and 5' rapid amplification of cDNA ends PCR. The cDNA sequence consists of 1892 bp with a 1560 bp open reading frame, encoding 520 amino acids with high identity to invertebrate, vertebrate and even bacterial catalases. The sequence includes the catalytic residues His71, Asn144, and Tyr354. The molecular mass of the predicted protein is 58824.04 Da with an estimated pl of 6.63. Sequence comparison showed that the deduced amino acid sequence of F. chinensis catalase shares 96%, 73%, 71% and 70% identity with that of Pacific white shrimp Litopenaeus vannamei, Abalone Haliotis discus hannai, Zhikong scallop Chlamys farreri and Human Homo sapiens, respectively. Catalase transcripts were detected in hepatopancreas, hemocytes, lymphoid organ, intestine, ovary, muscle and gill. by real-time PCR. The variation of catalase mRNA transcripts in hemocytes and hepatopancreas was also quantified by real-time PCR and the result indicated that the catalase showed up-regulated expression trends in hemocytes at 14 h and in hepatopancreas at 37 h after injection with white spot syndrome virus (WSSV). (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The γ-secretase protease complexes and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signalling events, which have a central role in Alzheimer’s disease, cancer progression and immune surveillance. It has previously been reported that the Interleukin-1 receptor, type 1, (IL-1R1) is a substrate for regulated intramembrane proteolysis, mediated by presenilin (PS)-dependent γ-secretase activity. The aims of this project were twofold. Firstly, to determine the conservation of regulated intramembrane proteolysis as a physiological occurrence amongst other cytokine receptors. In this regard, similar to IL-1R1, we identified the Tumour necrosis factor receptor type 1 (TNFR1) and the Toll like receptor 4 (TLR4) as novel γ-secretase substrates. Secondly, given that the diversity of signalling events mediated by the IL-1R1, TLR4 and TNFR1 are spatially segregated, we investigated the spatial distribution, subcellular trafficking and subcellular occurrence of regulated intramembrane proteolysis of IL-1R1, TLR4 and TNFR1. Using dynasore an inhibitor of clathrin-dependent receptor endocytosis, both ectodomain shedding and γ-secretase-mediated cleavage of IL-1R1 were observed post-internalization. In contrast, TNFR-1 underwent ectodomain shedding at the cell surface followed by endosomal γ-secretase-mediated cleavage. Furthermore, immortalised fibroblasts from PS1-deficient mice showed impaired γ-secretasemediated cleavage of IL-1R1 and TNFR1, indicating that both are cleaved by PS1-and not PS2-containing γ-secretase complexes. Subcellular fractionation and immunofluorescence studies revealed that the γ-secretase generated IL-1R1 ICD translocates to the nucleus on IL-1β stimulation. These observations further demonstrate the novel PS-dependent means of modulating IL-1β, LPS and TNFα- mediated immune responses by regulating IL-1R1/TLR4/TNFR1 protein levels within the cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phosphonopyruvate hydrolase, a novel bacterial carbon-phosphorus bond cleavage enzyme, was purified to homogeneity by a series of chromatographic steps from cell extracts of a newly isolated environmental strain of Variovorax sp. Pal2. The enzyme was inducible in the presence of phosphonoalanine or phosphonopyruvate; unusually, its expression was independent of the phosphate status of the cell. The native enzyme had a molecular mass of 63 kDa with a subunit mass of 31.2 kDa. Activity of purified phosphonopyruvate hydrolase was Co2+-dependent and showed a pH optimum of 6.7–7.0. The enzyme had a Km of 0.53 mM for its sole substrate, phosphonopyruvate, and was inhibited by the analogues phosphonoformic acid, 3-phosphonopropionic acid, and hydroxymethylphosphonic acid. The nucleotide sequence of the phosphonopyruvate hydrolase structural gene indicated that it is a member of the phosphoenolpyruvate phosphomutase/isocitrate lyase superfamily with 41% identity at the amino acid level to the carbon-to-phosphorus bond-forming enzyme phosphoenolpyruvate phosphomutase from Tetrahymena pyriformis. Thus its apparently ancient evolutionary origins differ from those of each of the two carbon-phosphorus hydrolases that have been reported previously; phosphonoacetaldehyde hydrolase is a member of the haloacetate dehalogenase family, whereas phosphonoacetate hydrolase belongs to the alkaline phosphatase superfamily of zinc-dependent hydrolases. Phosphonopyruvate hydrolase is likely to be of considerable significance in global phosphorus cycling, because phosphonopyruvate is known to be a key intermediate in the formation of all naturally occurring compounds that contain the carbon-phosphorus bond.