982 resultados para enterotoxigenic Escherichia coli
Resumo:
The etiological role of enterotoxigenic E. coli (ETEC) in diarrheal diseases of man and domestic animals is firmly established. Besides the production of enterotoxins (ST and LT), ETEC produces other important virulence factors; the colonization factor antigens (CFAs). CFAs mediate the attachment of ETEC to the epithelial cells of the small intestine, and this favors colonization by the bacteria and facilitates delivery of the enterotoxins to the intestinal cells.^ The production of enterotoxin and CFA is determined by plasmids and has been found to be restricted to a select number of E. coli serotypes.^ In this work, plasmid DNA analysis was performed in twenty-three CFA/II-producing enterotoxigenic Escherichia coli strains and their spontaneous CFA/II-negative derivatives. In some cases, strains lost the high molecular weight plasmid and also the ability to produce CFA/II, ST and LT. In other cases there was a deletion of the plasmid, which produced strains that were CFA/II('-), ST('-), LT('-) or CFA/II('-), ST('+), LT('+).^ The CFA/II plasmid from strain PB-176 (06:H16:CFA/II('+), ST('+), LT('+)) was transferred by transformation into E. coli K12 with concomitant transfer of the three characteristics: CFA/II, ST and LT.^ A physical map of the prototype CFA/II:ST:LT (pMEP60) plasmid was constructed by restriction endonuclease analysis and compared to plasmids from three other CFA/II-producing strains. A CFA/II-negative (but ST and LT positive) deletion derivative of pMEP60 (pMEP30) was also included in the map. The four CFA/II plasmids analyzed had a common region of approximately 30 kilobase pairs. The toxin genes were approximately 5 kbp apart and about 20 kbp from the common region. The information given by this physical map could be of great value when constructing a clone that will express the CFA/II genes but not the toxin genes. ^
Resumo:
Enterotoxigenic Escherichia coli associated with human diarrheal disease utilize any of a limited group of serologically distinguishable pili for attachment to intestinal cells. These include CS1 and CFA/I pili. We show here that chemical modification of arginyl residues in CS1 pili abolishes CS1-mediated agglutination of bovine erythrocytes, which serves as a model system for attachment. Alanine substitution of the single arginyl residue in CooA, the major pilin, had no effect on the assembly of pili or on hemagglutination. In contrast, substitution of alanine for R181 in CooD, the minor pilin associated with the pilus tip, abolished hemagglutination, and substitution of R20 reduced hemagglutination. Neither of these substitutions affected CS1 pilus assembly. This shows that CooD is essential for CS1-mediated attachment and identifies specific residues that are involved in receptor binding but not in pilus assembly. In addition to mediating agglutination of bovine erythrocytes, CFA/I also mediates agglutination of human erythrocytes. Substitution of R181 by alanine in the CooD homolog, CfaE, abolished both of these reactions. We conclude that the same region of the pilus tip protein is involved in adherence of CS1 and CFA/I pili, although their receptor specificities differ. This suggests that the region of the pilus tip adhesin protein that includes R181 might be an appropriate target for therapeutic intervention or for a vaccine to protect against human diarrhea caused by enterotoxigenic E. coli strains that have serologically different pili.
Resumo:
IA, JNP, and MP were partly supported by the NIH, grants R01-AI-100947 to MP, and R21-GM-107683 to Matthias Chung, subcontract to MP. JNP was partly supported by an NSF graduate fellowship number DGE750616. IA, JNP, BRL, OCS and MP were supported in part by the Bill and Melinda Gates Foundation, award number 42917 to OCS. JP and AWW received core funding support from The Wellcome Trust (grant number 098051). AWW, and the Rowett Institute of Nutrition and Health, University of Aberdeen, receive core funding support from the Scottish Government Rural and Environmental Science and Analysis Service (RESAS).
Resumo:
CS1 pili serve as the prototype of a class of filamentous appendages found on the surface of strains of enterotoxigenic Escherichia coli. The four genes needed to synthesize functional CS1 pili in E. coli K12 are: cooA, which encodes the major pilin protein; cooD, which encodes a minor pilin protein found at the tip of the structure; cooC, which encodes a protein found in the outer membrane of piliated bacteria; and cooB. We show here that CooB, which is required for pilus assembly but is not part of the final structure, stabilizes CooA, CooC, and CooD. We previously reported that CooB is complexed with CooA in the periplasm and show here that CooB also is found complexed with CooD in the periplasm. CooB is associated with the membrane fraction only in the presence of CooC, suggesting that these two proteins also interact. This suggests that although it has no homology to known chaperone proteins, CooB serves a chaperone-like role for assembly of CS1.
Resumo:
Background & Aims: We have developed a therapeutic strategy for gastrointestinal infections that is based on molecular mimicry of host receptors for bacterial toxins on the surface of harmless gut bacteria. The aim of this study was to apply this to the development of a recombinant probiotic for treatment and prevention of diarrheal disease caused by enterotoxigenic Escherichia coli strains that produce heat-labile enterotoxin. Methods: This was achieved by expressing glycosyltransferase genes from Neisseria meningitidis or Campylobacter jejuni in a harmless Escherichia coli strain (CWG:308), resulting in the production of a chimeric lipopolysaccharide capable of binding heat-labile enterotoxin with high avidity. Results: The strongest heat-labile enterotoxin binding was achieved with a construct (CWG308:pLNT) that expresses a mimic of lacto-N-neotetraose, which neutralized ≥ 93.8% of the heat-labile enterotoxin activity in culture lysates of diverse enterotoxigenic Escherichia coli strains of both human and porcine origin. When tested with purified heat-labile enterotoxin, it was capable of adsorbing approximately 5% of its own weight of toxin. Weaker toxin neutralization was achieved with a construct that mimicked the ganglioside GM2. Preabsorption with, or coadministration of, CWG308:pLNT also resulted in significant in vivo protection from heat-labile enterotoxin-induced fluid secretion in rabbit ligated ileal loops. Conclusions: Toxin-binding probiotics such as those described here have considerable potential for prophylaxis and treatment of enterotoxigenic Escherichia coli-induced travelers' diarrhea.
Resumo:
The contribution of enterotoxigenic Escherichia coli (ETEC) to pre-weaning diarrhoea was investigated over a 6 month period at five selected commercial piggeries (CPs) in north Vietnam with at least 100 sows each. Diarrhoea was found to affect 71(.)5% of the litters born during the period of study. Of 406 faecal specimens submitted for bacteriological culture, 200 (49(.)3%) yielded a heavy pure culture of E coli and 126(31 %)were confirmed by PCR to carry at least one of eight porcine ETEC virulence genes. ETEC was responsible for 43% of cases of diarrhoea in neonatal pigs during the first 4 days of life and 23(.)9% of the remaining cases up until the age of weaning. Pathotypes were determined by PCR for the 126 ETEC isolates together with 44 ETEC isolates obtained from village pigs (VPs) raised by smallholder farmers. The CP isolates belonged to five pathotypes, four of which were also identified in VP isolates. Haemolytic serogroup O149: K91 isolates that belonged to F4/STa/STb/LT were most commonly identified in both CPs (33 % of isolates) and VPs (45(.)5%). Other combinations identified in both production systems included O64 (F5/STa), O101 (F4/STa/STb) and O-nontypable (F-/STb). A high proportion of CP isolates (22(.)3 %) possessed all three enterotoxins (STa/STWLT), lacked the genes for all five tested fimbriae (F4, F5, F6, F41 and F18) and belonged to serogroup O8. These unusual 08 F- isolates were haemolytic and were isolated from all ages of diarrhoeic piglets at each CP, suggesting that they have pathogenic potential.
Resumo:
The ability of Escherichia coli to express the K88 fimbrial adhesin was satisfactorily indicated by the combined techniques of ELISA, haemagglutination and latex agglutination. Detection of expression by electron microscopy and the ability to metabolize raffinose were unsuitable. Quantitative expression of the K88 adhesin was determined by ELISA. Expression was found to vary according to the E.coli strain examined, media type and form. In general it was found that the total amount was greater, while the amount/cfu was less on agar than in broth cultures. Expression of the K88 adhesin during unshaken batch culture was related to the growth rate and was maximal during late logarithmic to early stationary phase. A combination of heat extraction, ammonium sulphate and isoelectric precipitation was found suitable for both large and small scale preparation of purified K88ab adhesin. Extraction of the K88 adhesin was sensitive to pH and it was postulated that this may affect the site of colonisation of by ETEC in vivo. Results of haemagglutination experiments were consistent with the hypothesis that the K88 receptor present on erythrocytes is composed of two elements, one responsible for the binding of K88ab and K88ac and a second responsible for the binding of the K88ad adhesin. Comparison of the haemagglutinating properties of cell-free and cell-bound K88 adhesin revealed some differences probably indicating a minor conformational change in the K88 adhesin on its isolation. The K88ab adhesin was found to bind to erythrocytes over a wide pH range (PH 4-9) and was inhibited by αK88ab and αK88b antisera. Inhibition of haemagglutination was noted with crude heparin, mannan and porcine gastric mucin, chondrosine and several hexosamines, glucosamine in particular. The most potent inhibitor of haemagglutination was n-dodecyl-β-D-glucopyranoside, one of a series of glucosides found to have inhibitory properties. Correlation between hydrophobicity of glucosides tested and degree of inhibition observed suggested hydrophobic forces were important in the interaction of the K88 adhesin with its receptor. The results of Scatchard and Hill plots indicated that binding of the K88ab adhesin to porcine enterocytes in the majority of cases is a two-step, three component system. The first K88 receptor (or site) had a K2. of 1.59x1014M-1 and a minimum of 4.3x104 sites/enterocyte. The second receptor (or site) had a K2 of 4.2x1012M-1 with a calculated 1.75x105 sites/enterocyte. Attempts to inhibit binding of cell-free K88 adhesin to porcine enterocytes by lectins were unsuccessful. However, several carbohydrates including trehalose, lactulose, galactose 1→4 mannopyranoside, chondrosine, galactosamine, stachyose and mannan were inhibitory. The most potent inhibitor was found to be porcine gastric mucin. Inhibition observed with n-octyl-α-D-glucopyranose was difficult to interpret in isolation because of interference with the assay, however, it agreed with the results of haemagglutination inhibition experiments.
Resumo:
BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) is a globally prevalent cause of diarrhea. Though usually self-limited, it can be severe and debilitating. Little is known about the host transcriptional response to infection. We report the first gene expression analysis of the human host response to experimental challenge with ETEC. METHODS: We challenged 30 healthy adults with an unattenuated ETEC strain, and collected serial blood samples shortly after inoculation and daily for 8 days. We performed gene expression analysis on whole peripheral blood RNA samples from subjects in whom severe symptoms developed (n = 6) and a subset of those who remained asymptomatic (n = 6) despite shedding. RESULTS: Compared with baseline, symptomatic subjects demonstrated significantly different expression of 406 genes highlighting increased immune response and decreased protein synthesis. Compared with asymptomatic subjects, symptomatic subjects differentially expressed 254 genes primarily associated with immune response. This comparison also revealed 29 genes differentially expressed between groups at baseline, suggesting innate resilience to infection. Drug repositioning analysis identified several drug classes with potential utility in augmenting immune response or mitigating symptoms. CONCLUSIONS: There are statistically significant and biologically plausible differences in host gene expression induced by ETEC infection. Differential baseline expression of some genes may indicate resilience to infection.
Resumo:
Diarrheal disease associated with enterotoxigenic Escherichia coli (ETEC) infection is one of the major public health problems in many developing countries, especially in infants and young children. Because tests suitable for field laboratories have been developed only relatively recently, the literature on the environmental risk factors associated with ETEC is not as complete as for many other pathogens or for diarrhea of unspecified etiology.^ Data from a diarrheal disease surveillance project in rural Egypt in which stool samples were tested for a variety of pathogens, and in which an environmental questionnaire was completed for the same study households, provided an opportunity to test for an association between ETEC and various risk factors present in those households. ETEC laboratory-positive specimens were compared with ETEC laboratory-negative specimens for both symptomatic and asymptomatic children less than three years of age at the individual and household level using a case-comparison design.^ Individual children more likely to have LT infection were those who lived in HHs that had cooked food stored for subsequent consumption at the time of the visit, where caretakers used water but not soap to clean an infant after a diarrheal stool, and that had an indoor, private water source. LT was more common in HHs where the caretaker did not clean an infant with soap after a diarrheal stool, and where a sleeping infant was not covered with a net. At both the individual and HH level, LT was significantly associated with good water supply in terms of quantity and storage.^ ST was isolated more frequently at the individual level where a sleeping infant was covered with a net, where large animals were kept in or around the house, where water was always available and was not potable, and where the water container was not covered. At the HH level, the absence of a toilet or latrine and the indiscriminate disposal of animal waste decreased risk. Using animal feces for fertilizer, the presence of large animals, and poor water quality were associated with ST at both the individual and HH level.^ These findings are mostly consistent with those of other studies, and/or are biologically plausible, with the obvious exception of those from this study where poorer water supplies are associated with less infection, at least in the case of LT. More direct observation of how animal ownership and feces disposal relates to different types of water supply and usage might clarify mechanisms through which some ETEC infection could be prevented in similar settings. ^
Resumo:
Les diarrhées post-sevrages causées par des infections à Escherichia coli entérotoxinogène positif pour le fimbriae F4 (ETEC F4), entraînent des pertes économiques importantes chez les producteurs de porc. Depuis quelques années, l’utilisation de probiotiques, comme additif alimentaire pour prévenir ce type d’infection entérique et réduire les traitements aux antimicrobiens, suscite un intérêt grandissant en production porcine. Le but du présent travail est de déterminer l’influence de l’administration des probiotiques Pediococcus acidilactici (PA) et Saccharomyces cerevisiae boulardii (SCB) sur la colonisation et l’attachement des ETEC F4, l’accumulation de fluide intestinal et l’expression de cytokines dans l’iléon de porcelets sevrés. Dès la naissance, différentes portées de porcelets ont été affectées aux traitements suivants : PA, SCB, PA + SCB, témoin et témoin avec antibiotiques (ATB). Une dose quotidienne de probiotiques (1 × 109 UFC) a été administrée aux porcelets des groupes probiotiques durant la lactation et après le sevrage. Sept jours après le sevrage, à 28 jours d’âge, des porcelets positifs pour le récepteur intestinal spécifique pour F4 ont été infectés oralement avec une souche ETEC F4. Les porcelets ont été euthanasiés 24 heures après l’infection (jour 29) et différents échantillons intestinaux ont été prélevés. Chez les porcelets recevant des probiotiques, l’attachement des ETEC F4 à la muqueuse iléale était significativement diminué chez les groupes PA ou SCB en comparaison avec le groupe ATB. Finalement, l’expression de cytokines intestinales était plus élevée chez les porcs du groupe PA + SCB en comparaison avec les porcelets témoins. En conclusion, les résultats de cette étude suggèrent que l’administration de probiotiques pourrait être une alternative pour limiter les infections à ETEC F4 chez le porc.
Resumo:
Les E. coli entérotoxinogènes (ETEC) sont souvent la cause de diarrhée post-sevrage chez le porc. Deux types d’entérotoxines sont retrouvées chez les ETEC, soit les thermolabiles, comme la toxine LT, et les thermostables, comme EAST-1, STa et STb. Cette dernière est composée de 48 acides aminés et est impliquée dans la pathologie causée par les ETEC. Pour la première fois un variant de la toxine STb fut découvert dans une étude. Nous avons alors émis l’hypothèse qu’il y a présence de variants dans la population de souches ETEC du Québec. Dans les 100 souches STb+ analysées, 23 possédaient le gène de la toxine avec une variation dans la séquence génétique : l’asparagine était présente en position 12 remplaçant ainsi l’histidine. Une corrélation entre la présence du variant et la présence de facteurs de virulence retrouvés dans ces 100 souches ETEC étudiées a été effectuée. Ce variant semble fortement associé à la toxine STa puisque toutes les souches variantes ont hybridé avec le gène codant pour cette dernière. Étant donné sa présence répandue dans la population de souches ETEC du Québec, nous avons de plus émis l’hypothèse que ce variant a des caractéristiques biologiques altérées par rapport à la toxine sauvage. L’analyse par dichroïsme circulaire a montré que le variant et la toxine sauvage ont une structure secondaire ainsi qu’une stabilité similaires. Par la suite, l’attachement au récepteur de la toxine, le sulfatide, a été étudié par résonnance plasmonique de surface (biacore). Le variant a une affinité au sulfatide légèrement réduite comparativement à la toxine sauvage. Puisque l’internalisation de la toxine fut observée dans une étude précédente et qu’elle semble liée à la toxicité, nous avons comparé l’internalisation du variant et de la toxine sauvage à l’intérieur des cellules IPEC-J2. L’internalisation du variant dans les cellules est légèrement supérieure à l’internalisation de la toxine sauvage. Ces résultats suggèrent que le variant est biochimiquement et structurellement comparable à la toxine sauvage.