932 resultados para ensemble empirical mode decomposition with canonical correlation analysis (EEMD-CCA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical Mode Decomposition (EMD) is a data driven technique for extraction of oscillatory components from data. Although it has been introduced over 15 years ago, its mathematical foundations are still missing which also implies lack of objective metrics for decomposed set evaluation. Most common technique for assessing results of EMD is their visual inspection, which is very subjective. This article provides objective measures for assessing EMD results based on the original definition of oscillatory components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canonical Correlation Analysis for Interpreting Airborne Laser Scanning Metrics along the Lorenz Curve of Tree Size Inequality

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is focused on the analysis of sea–level change (last century), based mainly on instrumental observations. During this period, individual components of sea–level change are investigated, both at global and regional scales. Some of the geophysical processes responsible for current sea-level change such as glacial isostatic adjustments and current melting terrestrial ice sources, have been modeled and compared with observations. A new value of global mean sea level change based of tide gauges observations has been independently assessed in 1.5 mm/year, using corrections for glacial isostatic adjustment obtained with different models as a criterion for the tide gauge selection. The long wavelength spatial variability of the main components of sea–level change has been investigated by means of traditional and new spectral methods. Complex non–linear trends and abrupt sea–level variations shown by tide gauges records have been addressed applying different approaches to regional case studies. The Ensemble Empirical Mode Decomposition technique has been used to analyse tide gauges records from the Adriatic Sea to ascertain the existence of cyclic sea-level variations. An Early Warning approach have been adopted to detect tipping points in sea–level records of North East Pacific and their relationship with oceanic modes. Global sea–level projections to year 2100 have been obtained by a semi-empirical approach based on the artificial neural network method. In addition, a model-based approach has been applied to the case of the Mediterranean Sea, obtaining sea-level projection to year 2050.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compute the influence action for a system perturbatively coupled to a linear scalar field acting as the environment. Subtleties related to divergences that appear when summing over all the modes are made explicit and clarified. Being closely connected with models used in the literature, we show how to completely reconcile the results obtained in the context of stochastic semiclassical gravity when using mode decomposition with those obtained by other standard functional techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The final warming date of the polar vortex is a key component of Southern Hemisphere stratospheric and tropospheric variability in spring and summer. We examine the effect of external forcings on Southern Hemisphere final warming date, and the sensitivity of any projected changes to model representation of the stratosphere. Final warming date is calculated using a temperature-based diagnostic for ensembles of high- and low-top CMIP5 models, under the CMIP5 historical, RCP4.5, and RCP8.5 forcing scenarios. The final warming date in the models is generally too late in comparison with those from reanalyses: around two weeks too late in the low-top ensemble, and around one week too late in the high-top ensemble. Ensemble Empirical Mode Decomposition (EEMD) is used to analyse past and future change in final warming date. Both the low- and high-top ensemble show characteristic behaviour expected in response to changes in greenhouse gas and stratospheric ozone concentrations. In both ensembles, under both scenarios, an increase in final warming date is seen between 1850 and 2100, with the latest dates occurring in the early twenty-first century, associated with the minimum in stratospheric ozone concentrations in this period. However, this response is more pronounced in the high-top ensemble. The high-top models show a delay in final warming date in RCP8.5 that is not produced by the low-top models, which are shown to be less responsive to greenhouse gas forcing. This suggests that it may be necessary to use stratosphere resolving models to accurately predict Southern Hemisphere surface climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of multi-modal and multi-sensor images is nowadays of paramount importance for Earth Observation (EO) applications. There exist a variety of methods that aim at fusing the different sources of information to obtain a compact representation of such datasets. However, for change detection existing methods are often unable to deal with heterogeneous image sources and very few consider possible nonlinearities in the data. Additionally, the availability of labeled information is very limited in change detection applications. For these reasons, we present the use of a semi-supervised kernel-based feature extraction technique. It incorporates a manifold regularization accounting for the geometric distribution and jointly addressing the small sample problem. An exhaustive example using Landsat 5 data illustrates the potential of the method for multi-sensor change detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Although hypercaloric interventions are associated with nutritional, endocrine, metabolic, and cardiovascular disorders in obesity experiments, a rational distinction between the effects of excess adiposity and the individual roles of dietary macronutrients in relation to these disturbances has not previously been studied. This investigation analyzed the correlation between ingested macronutrients (including sucrose and saturated and unsaturated fatty acids) plus body adiposity and metabolic, hormonal, and cardiovascular effects in rats with diet-induced obesity. Methods: Normotensive Wistar-Kyoto rats were submitted to Control (CD; 3.2 Kcal/g) and Hypercaloric (HD; 4.6 Kcal/g) diets for 20 weeks followed by nutritional evaluation involving body weight and adiposity measurement. Metabolic and hormonal parameters included glycemia, insulin, insulin resistance, and leptin. Cardiovascular analysis included systolic blood pressure profile, echocardiography, morphometric study of myocardial morphology, and myosin heavy chain (MHC) protein expression. Canonical correlation analysis was used to evaluate the relationships between dietary macronutrients plus adiposity and metabolic, hormonal, and cardiovascular parameters. Results: Although final group body weights did not differ, HD presented higher adiposity than CD. Diet induced hyperglycemia while insulin and leptin levels remained unchanged. In a cardiovascular context, systolic blood pressure increased with time only in HD. Additionally, in vivo echocardiography revealed cardiac hypertrophy and improved systolic performance in HD compared to CD; and while cardiomyocyte size was unchanged by diet, nuclear volume and collagen interstitial fraction both increased in HD. Also HD exhibited higher relative β-MHC content and β/α-MHC ratio than their Control counterparts. Importantly, body adiposity was weakly associated with cardiovascular effects, as saturated fatty acid intake was directly associated with most cardiac remodeling measurements while unsaturated lipid consumption was inversely correlated with these effects. Conclusion: Hypercaloric diet was associated with glycemic metabolism and systolic blood pressure disorders and cardiac remodeling. These effects directly and inversely correlated with saturated and unsaturated lipid consumption, respectively. © 2013 Oliveira Junior et al.; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (FMRI) analysis methods can be quite generally divided into hypothesis-driven and data-driven approaches. The former are utilised in the majority of FMRI studies, where a specific haemodynamic response is modelled utilising knowledge of event timing during the scan, and is tested against the data using a t test or a correlation analysis. These approaches often lack the flexibility to account for variability in haemodynamic response across subjects and brain regions which is of specific interest in high-temporal resolution event-related studies. Current data-driven approaches attempt to identify components of interest in the data, but currently do not utilise any physiological information for the discrimination of these components. Here we present a hypothesis-driven approach that is an extension of Friman's maximum correlation modelling method (Neurolmage 16, 454-464, 2002) specifically focused on discriminating the temporal characteristics of event-related haemodynamic activity. Test analyses, on both simulated and real event-related FMRI data, will be presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The purpose of this study was to evaluate the diagnostic usefulness of ulnar nerve sonography in leprosy neuropathy with electrophysiologic correlation. Methods. Twenty-one consecutive patients with leprosy (12 men and 9 women; mean age +/- SD, 47.7 +/- 17.2 years) and 20 control participants (14 men and 6 women; mean age, 46.5 +/- 16.2 years) were evaluated with sonography. Leprosy diagnosis was established on the basis of clinical, bacteriologic, and histopathologic criteria. The reference standard for ulnar neuropathy in this study was clinical symptoms in patients with proven leprosy The sonographic cross-sectional areas (CSAs) of the ulnar nerve in 3 different regions were obtained. Statistical analyses included Student t tests and receiver operating characteristic curve analysis. Results. The CSAs of the ulnar nerve were significantly larger in the leprosy group than the control group for all regions (P < .01). Sonographic abnormalities in leprosy nerves included focal thickening (90.5%), hypoechoic areas (81%), loss of the fascicular pattern (33.3%), and focal hyperechoic areas (4.7%). Receiver operating characteristic curve analysis showed that a maximum CSA cutoff value of 9.8 mm(2) was the best discriminator (sensitivity, 0.91; specificity, 0.90). Three patients with normal electrophysiologic findings had abnormal sonographic findings. Two patients had normal sonographic findings, of which 1 had abnormal electrophysiologic findings, and the other refused electrophysiologic testing. Conclusions. Sonography and electrophysiology were complementary for identifying ulnar nerve neuropathy in patients with leprosy, with clinical symptoms as the reference standard. This reinforces the role of sonography in the investigation of leprosy ulnar neuropathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. New method: We propose a complete pipeline for the cluster analysis of ERP data. To increase the signalto-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA)to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). Results: After validating the pipeline on simulated data, we tested it on data from two experiments – a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership.