992 resultados para energy futures
Resumo:
27 p.
Resumo:
We address the valuation of an operating wind farm and the finite-lived option to invest in it under different reward/support schemes: a constant feed-in tariff, a premium on top of the electricity market price (either a fixed premium or a variable subsidy such as a renewable obligation certificate or ROC), and a transitory subsidy, among others. Futures contracts on electricity with ever longer maturities enable market-based valuations to be undertaken. The model considers up to three sources of uncertainty: the electricity price, the level of wind generation, and the certificate (ROC) price where appropriate. When analytical solutions are lacking, we resort to a trinomial lattice combined with Monte Carlo simulation; we also use a two-dimensional binomial lattice when uncertainty in the ROC price is considered. Our data set refers to the UK. The numerical results show the impact of several factors involved in the decision to invest: the subsidy per MWh generated, the initial lump-sum subsidy, the maturity of the investment option, and electricity price volatility. Different combinations of variables can help bring forward investments in wind generation. One-off policies, e.g., a transitory initial subsidy, seem to have a stronger effect than a fixed premium per MWh produced.
Resumo:
This paper investigates 'future-proofing' as an unexplored yet all-important aspect in the design of low-energy dwellings. It refers particularly to adopting lifecycle thinking and accommodating risks and uncertainties in the selection of fabric energy efficiency measures and low or zero-carbon technologies. Based on a conceptual framework for future-proofed design, the paper first presents results from the analysis of two 'best practice' housing developments in England; i.e., North West Cambridge in Cambridge and West Carclaze and Baal in St. Austell, Cornwall. Second, it examines the 'Energy and CO2 Emissions' part of the Code for Sustainable Homes to reveal which design criteria and assessment methods can be practically integrated into this established building certification scheme so that it can become more dynamic and future-oriented.Practical application: Future-proofed construction is promoted implicitly within the increasingly stringent building regulations; however, there is no comprehensive method to readily incorporate futures thinking into the energy design of buildings. This study has a three-fold objective of relevance to the building industry:Illuminating the two key categories of long-term impacts in buildings, which are often erroneously treated interchangeably:- The environmental impact of buildings due to their long lifecycles.- The environment's impacts on buildings due to risks and uncertainties affecting the energy consumption by at least 2050. This refers to social, technological, economic, environmental and regulatory (predictable or unknown) trends and drivers of change, such as climate uncertainty, home-working, technology readiness etc.Encouraging future-proofing from an early planning stage to reduce the likelihood of a prematurely obsolete building design.Enhancing established building energy assessment methods (certification, modelling or audit tools) by integrating a set of future-oriented criteria into their methodologies. © 2012 The Chartered Institution of Building Services Engineers.
Resumo:
Ecosystems provide a range of goods and services that contribute toward human well-being. It is increasingly recognized that factors such as a growing and increasingly affluent world population, coupled with increased globalization of trade, are significantly influencing the delivery of ecosystem goods and services. This chapter argues that future energy policy must be designed based on a broad set of environmental and social considerations that examine the national and international implications of each energy technology. This approach ensures a more holistic overview of the costs and benefits associated with energy production, allowing society to make more informed choices about their futures, including how their energy is sourced, generated, and delivered.
Resumo:
The decarbonisation of energy systems draw a new set of stakeholders into debates over energy generation, engage a complex set of social, political, economic and environmental processes and impact at a wide range of geographical scales, including local landscape changes, national energy markets and regional infrastructure investment. This paper focusses on a particular geographic scale, that of the regions/nations of the UK (Scotland, Wales, Northern Ireland), who have been operating under devolved arrangements since the late 1990s, coinciding with the mass deployment of wind energy. The devolved administrations of the UK possess an asymmetrical set of competencies over energy policy, yet also host the majority of the UK wind resource. This context provides a useful way to consider the different ways in which geographies of "territory" are reflected in energy governance, such through techno-rational assessments of demand or infrastructure investment, but also through new spatially-defined institutions that seek to develop their own energy future, using limited regulatory competencies. By focussing on the way the devolved administrations have used their responsibilities for planning over the last decade this paper will assess the way in which the spatial politics of wind energy is giving rise to renewed forms of territorialisation of natural resources. In so doing, we aim to contribute to clarifying the questions raised by Hodson and Marvin (2013) on whether low carbon futures will reinforce or challenge dominant ways of organising relationships between the nation-state, regions, energy systems and the environment.
Resumo:
Small-scale, decentralized and community-owned renewable energy is widely acknowledged to be a desirable feature of low carbon futures, but faces a range of challenges in the context of conventional, centralized energy systems. This paper draws on transition frameworks to investigate why the UK has been an inhospitable context for community-owned renewables and assesses whether anything fundamental is changing in this regard. We give particular attention to whether political devolution, the creation of elected governments for Scotland, Wales and Northern Ireland, has affected the trajectory of community renewables. Our analysis notes that devolution has increased political attention to community renewables, including new policy targets and support schemes. However, these initiatives are arguably less important than the persistence of key features of socio-technical regimes: market support systems for renewable energy and land-use planning arrangements that systemically favour major projects and large corporations, and keep community renewables to the margins. There is scope for rolling out hybrid pathways to community renewables, via joint ownership or through community benefit funds, but this still positions community energy as an adjunct to energy pathways dominated by large, corporate generation facilities
Resumo:
This thesis consists of an introductory chapter (essay I) and five more empirical essays on electricity markets and CO2 spot price behaviour, derivatives pricing analysis and hedging. Essay I presents the structure of the thesis and electricity markets functioning and characteristics, as well as the type of products traded, to be analyzed on the following essays. In the second essay we conduct an empirical study on co-movements in electricity markets resorting to wavelet analysis, discussing long-term dynamics and markets integration. Essay three is about hedging performance and multiscale relationships in the German electricity spot and futures markets, also using wavelet analysis. We concentrate the investigation on the relationship between coherence evolution and hedge ratio analysis, on a time-frequency-scale approach, between spot and futures which conditions the effectiveness of the hedging strategy. Essays four, five and six are interrelated between them and with the other two previous essays given the nature of the commodity analyzed, CO2 emission allowances, traded in electricity markets. Relationships between electricity prices, primary energy fuel prices and carbon dioxide permits are analyzed on essay four. The efficiency of the European market for allowances is examined taking into account markets heterogeneity. Essay five analyzes stylized statistical properties of the recent traded asset CO2 emission allowances, for spot and futures returns, examining also the relation linking convenience yield and risk premium, for the German European Energy Exchange (EEX) between October 2005 and October 2009. The study was conducted through empirical estimations of CO2 allowances risk premium, convenience yield, and their relation. Future prices from an ex-post perspective are examined to show evidence for significant negative risk premium, or else a positive forward premium. Finally, essay six analyzes emission allowances futures hedging effectiveness, providing evidence for utility gains increases with investor’s preference over risk. Deregulation of electricity markets has led to higher uncertainty in electricity prices and by presenting these essays we try to shed new lights about structuring, pricing and hedging in this type of markets.
Resumo:
Property ownership can tie up large amounts of capital and management energy that business could employ more productively elsewhere. Competitive pressures, accounting changes and increasingly sophisticated occupier requirements are building demand for new and innovative ways to satisfy corporate occupation needs. The investment climate is also changing. Falling interest rates and falling inflation can be expected to undermine returns from the traditional FRI lease. In future, investment returns will be more dependent on active and innovative management geared to the needs of occupiers on whom income depends. Occupier and investor interests, therefore, look set to coincide, but unlocking the potential for both parties will depend on developing new finance and investment vehicles that align their respective needs. In the UK, examples include PFI in the public sector and off-balance sheet financing in the private sector. In the USA, “synthetic lease” structures have also become popular. Growing investment market experience in assessing risks and returns suggests scope for further innovative arrangements in the corporate sector. But how can such arrangements be structured? What are the risks, drivers and barriers?
Resumo:
Cities are responsible for up to 70% of global carbon emissions and 75% of global energy consumption. By 2050 it is estimated that 70% of the world's population will live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city-regions (i.e. the city and its wider hinterland) to re-engineer systemically their built environment and urban infrastructure in response to climate change and resource constraints. To inform transitions to urban sustainability, key stakeholders' perceptions were sought though a participatory backcasting and scenario foresight process in order to illuminate challenging but realistic socio-technical scenarios for the systemic retrofit of core UK city-regions. The challenge of conceptualizing complex urban transitions is explored across multiple socio-technical ‘regimes’ (housing, non-domestic buildings, urban infrastructure), scales (building, neighbourhood, city-region), and domains (energy, water, use of resources) within a participatory process. The development of three archetypal ‘guiding visions’ of retrofit city-regional futures developed through this process are discussed, along with the contribution that such foresight processes might play in ‘opening up’ the governance and strategic navigation of urban sustainability.
Resumo:
This paper characterizes the dynamics of jumps and analyzes their importance for volatility forecasting. Using high-frequency data on four prominent energy markets, we perform a model-free decomposition of realized variance into its continuous and discontinuous components. We find strong evidence of jumps in energy markets between 2007 and 2012. We then investigate the importance of jumps for volatility forecasting. To this end, we estimate and analyze the predictive ability of several Heterogenous Autoregressive (HAR) models that explicitly capture the dynamics of jumps. Conducting extensive in-sample and out-of-sample analyses, we establish that explicitly modeling jumps does not significantly improve forecast accuracy. Our results are broadly consistent across our four energy markets, forecasting horizons, and loss functions
Resumo:
Competing water demands for household consumption as well as the production of food, energy, and other uses pose challenges for water supply and sustainable development in many parts of the world. Designing creative strategies and learning processes for sustainable water governance is thus of prime importance. While this need is uncontested, suitable approaches still have to be found. In this article we present and evaluate a conceptual approach to scenario building aimed at transdisciplinary learning for sustainable water governance. The approach combines normative, explorative, and participatory scenario elements. This combination allows for adequate consideration of stakeholders’ and scientists’ systems, target, and transformation knowledge. Application of the approach in the MontanAqua project in the Swiss Alps confirmed its high potential for co-producing new knowledge and establishing a meaningful and deliberative dialogue between all actors involved. The iterative and combined approach ensured that stakeholders’ knowledge was adequately captured, fed into scientific analysis, and brought back to stakeholders in several cycles, thereby facilitating learning and co-production of new knowledge relevant for both stakeholders and scientists. However, the approach also revealed a number of constraints, including the enormous flexibility required of stakeholders and scientists in order for them to truly engage in the co-production of new knowledge. Overall, the study showed that shifts from strategic to communicative action are possible in an environment of mutual trust. This ultimately depends on creating conditions of interaction that place scientists’ and stakeholders’ knowledge on an equal footing.
Resumo:
The efficiency of the Iberian Energy Derivatives Market in its first five and a half years is assessed in terms of volume, open interest and price. The continuous market shows steady liquidity growth. Its volume is strongly correlated to that of the Over The Counter (OTC) market, the amount of market makers, the enrolment of financial agents and generation companies belonging to the integrated group of last resort suppliers, and the OTC cleared volume in its clearing house. The hedging efficiency, measured through the ratio between the final open interest and the cleared volume, shows the lowest values for the Spanish base load futures as they are the most liquid contracts. The ex-post forward risk premium has diminished due to the learning curve and the effect of the fixed price retributing the indigenous coal fired generation. This market is quite less developed than the European leaders headquartered in Norway and Germany. Enrolment of more traders, mainly international energy companies, financial agents, energy intensive industries and renewable generation companies is desired. Market monitoring reports by the market operator providing post-trade transparency, OTC data access by the energy regulator, and assessment of the regulatory risk can contribute to efficiency gains.
Resumo:
A comprehensive assessment of the liquidity development in the Iberian power futures market managed by OMIP (“Operador do Mercado Ibérico de Energia, Pólo Português”) in its first 4 years of existence is performed. This market started on July 2006. A regression model tracking the evolution of the traded volumes in the continuous market is built as a function of 12 potential liquidity drivers. The only significant drivers are the traded volumes in OMIP compulsory auctions, the traded volumes in the “Over The Counter” (OTC) market, and the OTC cleared volumes in OMIP clearing house (OMIClear). Furthermore, the enrollment of financial members shows strong correlation with the traded volumes in the continuous market. OMIP liquidity is still far from the levels reached by the most mature European markets (Nord Pool and EEX). The market operator and its clearing house could develop efficient marketing actions to attract new entrants active in the spot market (energy intensive industries, suppliers, and small producers) as well as volumes from the opaque OTC market, and to improve the performance of existing illiquid products. An active dialogue with all the stakeholders (market participants, spot market operator, and supervisory authorities) will help to implement such actions.
Resumo:
El mercado ibérico de futuros de energía eléctrica gestionado por OMIP (“Operador do Mercado Ibérico de Energia, Pólo Português”, con sede en Lisboa), también conocido como el mercado ibérico de derivados de energía, comenzó a funcionar el 3 de julio de 2006. Se analiza la eficiencia de este mercado organizado, por lo que se estudia la precisión con la que sus precios de futuros predicen el precio de contado. En dicho mercado coexisten dos modos de negociación: el mercado continuo (modo por defecto) y la contratación mediante subasta. En la negociación en continuo, las órdenes anónimas de compra y de venta interactúan de manera inmediata e individual con órdenes contrarias, dando lugar a operaciones con un número indeterminado de precios para cada contrato. En la negociación a través de subasta, un precio único de equilibrio maximiza el volumen negociado, liquidándose todas las operaciones a ese precio. Adicionalmente, los miembros negociadores de OMIP pueden liquidar operaciones “Over-The-Counter” (OTC) a través de la cámara de compensación de OMIP (OMIClear). Las cinco mayores empresas españolas de distribución de energía eléctrica tenían la obligación de comprar electricidad hasta julio de 2009 en subastas en OMIP, para cubrir parte de sus suministros regulados. De igual manera, el suministrador de último recurso portugués mantuvo tal obligación hasta julio de 2010. Los precios de equilibrio de esas subastas no han resultado óptimos a efectos retributivos de tales suministros regulados dado que dichos precios tienden a situarse ligeramente sesgados al alza. La prima de riesgo ex-post, definida como la diferencia entre los precios a plazo y de contado en el periodo de entrega, se emplea para medir su eficiencia de precio. El mercado de contado, gestionado por OMIE (“Operador de Mercado Ibérico de la Energía”, conocido tradicionalmente como “OMEL”), tiene su sede en Madrid. Durante los dos primeros años del mercado de futuros, la prima de riesgo media tiende a resultar positiva, al igual que en otros mercados europeos de energía eléctrica y gas natural. En ese periodo, la prima de riesgo ex-post tiende a ser negativa en los mercados de petróleo y carbón. Los mercados de energía tienden a mostrar niveles limitados de eficiencia de mercado. La eficiencia de precio del mercado de futuros aumenta con el desarrollo de otros mecanismos coexistentes dentro del mercado ibérico de electricidad (conocido como “MIBEL”) –es decir, el mercado dominante OTC, las subastas de centrales virtuales de generación conocidas en España como Emisiones Primarias de Energía, y las subastas para cubrir parte de los suministros de último recurso conocidas en España como subastas CESUR– y con una mayor integración de los mercados regionales europeos de energía eléctrica. Se construye un modelo de regresión para analizar la evolución de los volúmenes negociados en el mercado continuo durante sus cuatro primeros años como una función de doce indicadores potenciales de liquidez. Los únicos indicadores significativos son los volúmenes negociados en las subastas obligatorias gestionadas por OMIP, los volúmenes negociados en el mercado OTC y los volúmenes OTC compensados por OMIClear. El número de creadores de mercado, la incorporación de agentes financieros y compañías de generación pertenecientes a grupos integrados con suministradores de último recurso, y los volúmenes OTC compensados por OMIClear muestran una fuerte correlación con los volúmenes negociados en el mercado continuo. La liquidez de OMIP está aún lejos de los niveles alcanzados por los mercados europeos más maduros (localizados en los países nórdicos (Nasdaq OMX Commodities) y Alemania (EEX)). El operador de mercado y su cámara de compensación podrían desarrollar acciones eficientes de marketing para atraer nuevos agentes activos en el mercado de contado (p.ej. industrias consumidoras intensivas de energía, suministradores, pequeños productores, compañías energéticas internacionales y empresas de energías renovables) y agentes financieros, captar volúmenes del opaco OTC, y mejorar el funcionamiento de los productos existentes aún no líquidos. Resultaría de gran utilidad para tales acciones un diálogo activo con todos los agentes (participantes en el mercado, operador de mercado de contado, y autoridades supervisoras). Durante sus primeros cinco años y medio, el mercado continuo presenta un crecimento de liquidez estable. Se mide el desempeño de sus funciones de cobertura mediante la ratio de posición neta obtenida al dividir la posición abierta final de un contrato de derivados mensual entre su volumen acumulado en la cámara de compensación. Los futuros carga base muestran la ratio más baja debido a su buena liquidez. Los futuros carga punta muestran una mayor ratio al producirse su menor liquidez a través de contadas subastas fijadas por regulación portuguesa. Las permutas carga base liquidadas en la cámara de compensación ubicada en Madrid –MEFF Power, activa desde el 21 de marzo de 2011– muestran inicialmente valores altos debido a bajos volúmenes registrados, dado que esta cámara se emplea principalmente para vencimientos pequeños (diario y semanal). Dicha ratio puede ser una poderosa herramienta de supervisión para los reguladores energéticos cuando accedan a todas las transacciones de derivados en virtud del Reglamento Europeo sobre Integridad y Transparencia de los Mercados de Energía (“REMIT”), en vigor desde el 28 de diciembre de 2011. La prima de riesgo ex-post tiende a ser positiva en todos los mecanismos (futuros en OMIP, mercado OTC y subastas CESUR) y disminuye debido a la curvas de aprendizaje y al efecto, desde el año 2011, del precio fijo para la retribución de la generación con carbón autóctono. Se realiza una comparativa con los costes a plazo de generación con gas natural (diferencial “clean spark spread”) obtenido como la diferencia entre el precio del futuro eléctrico y el coste a plazo de generación con ciclo combinado internalizando los costes de emisión de CO2. Los futuros eléctricos tienen una elevada correlación con los precios de gas europeos. Los diferenciales de contratos con vencimiento inmediato tienden a ser positivos. Los mayores diferenciales se dan para los contratos mensuales, seguidos de los trimestrales y anuales. Los generadores eléctricos con gas pueden maximizar beneficios con contratos de menor vencimiento. Los informes de monitorización por el operador de mercado que proporcionan transparencia post-operacional, el acceso a datos OTC por el regulador energético, y la valoración del riesgo regulatorio pueden contribuir a ganancias de eficiencia. Estas recomendaciones son también válidas para un potencial mercado ibérico de futuros de gas, una vez que el hub ibérico de gas –actualmente en fase de diseño, con reuniones mensuales de los agentes desde enero de 2013 en el grupo de trabajo liderado por el regulador energético español– esté operativo. El hub ibérico de gas proporcionará transparencia al atraer más agentes y mejorar la competencia, incrementando su eficiencia, dado que en el mercado OTC actual no se revela precio alguno de gas. ABSTRACT The Iberian Power Futures Market, managed by OMIP (“Operador do Mercado Ibérico de Energia, Pólo Português”, located in Lisbon), also known as the Iberian Energy Derivatives Market, started operations on 3 July 2006. The market efficiency, regarding how well the future price predicts the spot price, is analysed for this energy derivatives exchange. There are two trading modes coexisting within OMIP: the continuous market (default mode) and the call auction. In the continuous trading, anonymous buy and sell orders interact immediately and individually with opposite side orders, generating trades with an undetermined number of prices for each contract. In the call auction trading, a single price auction maximizes the traded volume, being all trades settled at the same price (equilibrium price). Additionally, OMIP trading members may settle Over-the-Counter (OTC) trades through OMIP clearing house (OMIClear). The five largest Spanish distribution companies have been obliged to purchase in auctions managed by OMIP until July 2009, in order to partly cover their portfolios of end users’ regulated supplies. Likewise, the Portuguese last resort supplier kept that obligation until July 2010. The auction equilibrium prices are not optimal for remuneration purposes of regulated supplies as such prices seem to be slightly upward biased. The ex-post forward risk premium, defined as the difference between the forward and spot prices in the delivery period, is used to measure its price efficiency. The spot market, managed by OMIE (Market Operator of the Iberian Energy Market, Spanish Pool, known traditionally as “OMEL”), is located in Madrid. During the first two years of the futures market, the average forward risk premium tends to be positive, as it occurs with other European power and natural gas markets. In that period, the ex-post forward risk premium tends to be negative in oil and coal markets. Energy markets tend to show limited levels of market efficiency. The price efficiency of the Iberian Power Futures Market improves with the market development of all the coexistent forward contracting mechanisms within the Iberian Electricity Market (known as “MIBEL”) – namely, the dominant OTC market, the Virtual Power Plant Auctions known in Spain as Energy Primary Emissions, and the auctions catering for part of the last resort supplies known in Spain as CESUR auctions – and with further integration of European Regional Electricity Markets. A regression model tracking the evolution of the traded volumes in the continuous market during its first four years is built as a function of twelve potential liquidity drivers. The only significant drivers are the traded volumes in OMIP compulsory auctions, the traded volumes in the OTC market, and the OTC cleared volumes by OMIClear. The amount of market makers, the enrolment of financial members and generation companies belonging to the integrated group of last resort suppliers, and the OTC cleared volume by OMIClear show strong correlation with the traded volumes in the continuous market. OMIP liquidity is still far from the levels reached by the most mature European markets (located in the Nordic countries (Nasdaq OMX Commodities) and Germany (EEX)). The market operator and its clearing house could develop efficient marketing actions to attract new entrants active in the spot market (e.g. energy intensive industries, suppliers, small producers, international energy companies and renewable generation companies) and financial agents as well as volumes from the opaque OTC market, and to improve the performance of existing illiquid products. An active dialogue with all the stakeholders (market participants, spot market operator, and supervisory authorities) will help to implement such actions. During its firs five and a half years, the continuous market shows steady liquidity growth. The hedging performance is measured through a net position ratio obtained from the final open interest of a month derivatives contract divided by its accumulated cleared volume. The base load futures in the Iberian energy derivatives exchange show the lowest ratios due to good liquidity. The peak futures show bigger ratios as their reduced liquidity is produced by auctions fixed by Portuguese regulation. The base load swaps settled in the clearing house located in Spain – MEFF Power, operating since 21 March 2011, with a new denomination (BME Clearing) since 9 September 2013 – show initially large values due to low registered volumes, as this clearing house is mainly used for short maturity (daily and weekly swaps). The net position ratio can be a powerful oversight tool for energy regulators when accessing to all the derivatives transactions as envisaged by European regulation on Energy Market Integrity and Transparency (“REMIT”), in force since 28 December 2011. The ex-post forward risk premium tends to be positive in all existing mechanisms (OMIP futures, OTC market and CESUR auctions) and diminishes due to the learning curve and the effect – since year 2011 – of the fixed price retributing the indigenous coal fired generation. Comparison with the forward generation costs from natural gas (“clean spark spread”) – obtained as the difference between the power futures price and the forward generation cost with a gas fired combined cycle plant taking into account the CO2 emission rates – is also performed. The power futures are strongly correlated with European gas prices. The clean spark spreads built with prompt contracts tend to be positive. The biggest clean spark spreads are for the month contract, followed by the quarter contract and then by the year contract. Therefore, gas fired generation companies can maximize profits trading with contracts of shorter maturity. Market monitoring reports by the market operator providing post-trade transparency, OTC data access by the energy regulator, and assessment of the regulatory risk can contribute to efficiency gains. The same recommendations are also valid for a potential Iberian gas futures market, once an Iberian gas hub – currently in a design phase, with monthly meetings amongst the stakeholders in a Working Group led by the Spanish energy regulatory authority since January 2013 – is operating. The Iberian gas hub would bring transparency attracting more shippers and improving competition and thus its efficiency, as no gas price is currently disclosed in the existing OTC market.
Resumo:
There is substantial empirical evidence that energy and financial markets are closely connected. As one of the most widely-used energy resources worldwide, natural gas has a large daily trading volume. In order to hedge the risk of natural gas spot markets, a large number of hedging strategies can be used, especially with the rapid development of natural gas derivatives markets. These hedging instruments include natural gas futures and options, as well as Exchange Traded Fund (ETF) prices that are related to natural gas stock prices. The volatility spillover effect is the delayed effect of a returns shock in one physical, biological or financial asset on the subsequent volatility or co-volatility of another physical, biological or financial asset. Investigating volatility spillovers within and across energy and financial markets is a crucial aspect of constructing optimal dynamic hedging strategies. The paper tests and calculates spillover effects among natural gas spot, futures and ETF markets using the multivariate conditional volatility diagonal BEKK model. The data used include natural gas spot and futures returns data from two major international natural gas derivatives markets, namely NYMEX (USA) and ICE (UK), as well as ETF data of natural gas companies from the stock markets in the USA and UK. The empirical results show that there are significant spillover effects in natural gas spot, futures and ETF markets for both USA and UK. Such a result suggests that both natural gas futures and ETF products within and beyond the country might be considered when constructing optimal dynamic hedging strategies for natural gas spot prices.