993 resultados para energy distributions
Resumo:
The power output from a wave energy converter is typically predicted using experimental and/or numerical modelling techniques. In order to yield meaningful results the relevant characteristics of the device, together with those of the wave climate must be modelled with sufficient accuracy.
The wave climate is commonly described using a scatter table of sea states defined according to parameters related to wave height and period. These sea states are traditionally modelled with the spectral distribution of energy defined according to some empirical formulation. Since the response of most wave energy converters vary at different frequencies of excitation, their performance in a particular sea state may be expected to depend on the choice of spectral shape employed rather than simply the spectral parameters. Estimates of energy production may therefore be affected if the spectral distribution of wave energy at the deployment site is not well modelled. Furthermore, validation of the model may be affected by differences between the observed full scale spectral energy distribution and the spectrum used to model it.
This paper investigates the sensitivity of the performance of a bottom hinged flap type wave energy converter to the spectral energy distribution of the incident waves. This is investigated experimentally using a 1:20 scale model of Aquamarine Power’s Oyster wave energy converter, a bottom hinged flap type device situated at the European Marine Energy Centre (EMEC) in approximately 13m water depth. The performance of the model is tested in sea states defined according to the same wave height and period parameters but adhering to different spectral energy distributions.
The results of these tests show that power capture is reduced with increasing spectral bandwidth. This result is explored with consideration of the spectral response of the device in irregular wave conditions. The implications of this result are discussed in the context of validation of the model against particular prototype data sets and estimation of annual energy production.
Resumo:
This paper presents an experimental measurement campaign of urban microclimate for a building complex located in London, the United Kingdom. The experiment was carried out between 19 July and 16 August, 2010 at the Elephant & Castle site. The wind and solar energy distributions within the London urban experimental site were assessed in detail for their potential use in areas of high-rise urban building complexes. The climatic variables were measured at every five minutes for the air temperature, the wind speed and direction, the air humidity and the global solar radiation for a period of four weeks. The surface temperatures were also measured on the asphalt road, pavement and building walls at every hour for the first week of the campaign period. The effect of the building complex on the urban microclimate has been analyzed in terms of the solar radiation, the air temperature and velocity. The information and observation obtained from this campaign will be useful to the analysis of renewable energy implementations in dense urban situations.
Resumo:
Thanks to the Chandra and XMM–Newton surveys, the hard X-ray sky is now probed down to a flux limit where the bulk of the X-ray background is almost completely resolved into discrete sources, at least in the 2–8 keV band. Extensive programs of multiwavelength follow-up observations showed that the large majority of hard X–ray selected sources are identified with Active Galactic Nuclei (AGN) spanning a broad range of redshifts, luminosities and optical properties. A sizable fraction of relatively luminous X-ray sources hosting an active, presumably obscured, nucleus would not have been easily recognized as such on the basis of optical observations because characterized by “peculiar” optical properties. In my PhD thesis, I will focus the attention on the nature of two classes of hard X-ray selected “elusive” sources: those characterized by high X-ray-to-optical flux ratios and red optical-to-near-infrared colors, a fraction of which associated with Type 2 quasars, and the X-ray bright optically normal galaxies, also known as XBONGs. In order to characterize the properties of these classes of elusive AGN, the datasets of several deep and large-area surveys have been fully exploited. The first class of “elusive” sources is characterized by X-ray-to-optical flux ratios (X/O) significantly higher than what is generally observed from unobscured quasars and Seyfert galaxies. The properties of well defined samples of high X/O sources detected at bright X–ray fluxes suggest that X/O selection is highly efficient in sampling high–redshift obscured quasars. At the limits of deep Chandra surveys (∼10−16 erg cm−2 s−1), high X/O sources are generally characterized by extremely faint optical magnitudes, hence their spectroscopic identification is hardly feasible even with the largest telescopes. In this framework, a detailed investigation of their X-ray properties may provide useful information on the nature of this important component of the X-ray source population. The X-ray data of the deepest X-ray observations ever performed, the Chandra deep fields, allows us to characterize the average X-ray properties of the high X/O population. The results of spectral analysis clearly indicate that the high X/O sources represent the most obscured component of the X–ray background. Their spectra are harder (G ∼ 1) than any other class of sources in the deep fields and also of the XRB spectrum (G ≈ 1.4). In order to better understand the AGN physics and evolution, a much better knowledge of the redshift, luminosity and spectral energy distributions (SEDs) of elusive AGN is of paramount importance. The recent COSMOS survey provides the necessary multiwavelength database to characterize the SEDs of a statistically robust sample of obscured sources. The combination of high X/O and red-colors offers a powerful tool to select obscured luminous objects at high redshift. A large sample of X-ray emitting extremely red objects (R−K >5) has been collected and their optical-infrared properties have been studied. In particular, using an appropriate SED fitting procedure, the nuclear and the host galaxy components have been deconvolved over a large range of wavelengths and ptical nuclear extinctions, black hole masses and Eddington ratios have been estimated. It is important to remark that the combination of hard X-ray selection and extreme red colors is highly efficient in picking up highly obscured, luminous sources at high redshift. Although the XBONGs do not present a new source population, the interest on the nature of these sources has gained a renewed attention after the discovery of several examples from recent Chandra and XMM–Newton surveys. Even though several possibilities were proposed in recent literature to explain why a relatively luminous (LX = 1042 − 1043erg s−1) hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the very nature of XBONGs is still subject of debate. Good-quality photometric near-infrared data (ISAAC/VLT) of 4 low-redshift XBONGs from the HELLAS2XMMsurvey have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique. In two out of the four sources, the presence of a nuclear weak component hosted by a bright galaxy has been revealed. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4p) at the nuclear source, may explain the lack of optical emission lines. A weak nucleus not able to produce suffcient UV photons may provide an alternative or additional explanation. On the basis of an admittedly small sample, we conclude that XBONGs constitute a mixed bag rather than a new source population. When the presence of a nucleus is revealed, it turns out to be mildly absorbed and hosted by a bright galaxy.
Resumo:
Since its discovery, top quark has represented one of the most investigated field in particle physics. The aim of this thesis is the reconstruction of hadronic top with high transverse momentum (boosted) with the Template Overlap Method (TOM). Because of the high energy, the decay products of boosted tops are partially or totally overlapped and thus they are contained in a single large radius jet (fat-jet). TOM compares the internal energy distributions of the candidate fat-jet to a sample of tops obtained by a MC simulation (template). The algorithm is based on the definition of an overlap function, which quantifies the level of agreement between the fat-jet and the template, allowing an efficient discrimination of signal from the background contributions. A working point has been decided in order to obtain a signal efficiency close to 90% and a corresponding background rejection at 70%. TOM performances have been tested on MC samples in the muon channel and compared with the previous methods present in literature. All the methods will be merged in a multivariate analysis to give a global top tagging which will be included in ttbar production differential cross section performed on the data acquired in 2012 at sqrt(s)=8 TeV in high phase space region, where new physics processes could be possible. Due to its peculiarity to increase the pT, the Template Overlap Method will play a crucial role in the next data taking at sqrt(s)=13 TeV, where the almost totality of the tops will be produced at high energy, making the standard reconstruction methods inefficient.
Resumo:
A three-dimensional model has been proposed that uses Monte Carlo and fast Fourier transform convolution techniques to calculate the dose distribution from a fast neutron beam. This method transports scattered neutrons and photons in the forward, lateral, and backward directions and protons, electrons, and positrons in the forward and lateral directions by convolving energy spread kernels with initial interaction available energy distributions. The primary neutron and photon spectrums have been derived from narrow beam attenuation measurements. The positions and strengths of the effective primary neutron, scattered neutron, and photon sources have been derived from dual ion chamber measurements. The size of the effective primary neutron source has been measured using a copper activation technique. Heterogeneous tissue calculations require a weighted sum of two convolutions for each component since the kernels must be invariant for FFT convolution. Comparisons between calculations and measurements were performed for several water and heterogeneous phantom geometries. ^
Resumo:
We have studied the radial dependence of the energy deposition of the secondary electron generated by swift proton beams incident with energies T = 50 keV–5 MeV on poly(methylmethacrylate) (PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly differential cross section and the total cross section for ionization, as well as the average energy of the generated secondary electrons, show sizeable differences at T ⩽ 0.1 MeV when evaluated with these two ELF models. In order to know the radial distribution around the proton track of the energy deposited by the cascade of secondary electrons, a simulation has been performed that follows the motion of the electrons through the target taking into account both the inelastic interactions (via electronic ionizations and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic interactions. The radial distribution of the energy deposited by the secondary electrons around the proton track shows notable differences between the simulations performed with the extended-Drude ELF or the Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest intensity and sharpness of the deposited energy distributions takes place for proton beams incident with T ~ 0.1–1 MeV. We have also studied the influence in the radial distribution of deposited energy of using a full energy distribution of secondary electrons generated by proton impact or using a single value (namely, the average value of the distribution); our results show that differences between both simulations become important for proton energies larger than ~0.1 MeV. The results presented in this work have potential applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom) in order to properly consider the generation of electrons by proton beams and their subsequent transport and energy deposition through the target in nanometric scales.
Resumo:
This work was supported by the Joint Services Electronics Program (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract No. DA 28 043 AMC 00073(E).
Resumo:
Infrared spectra of atmospherically important dimethylquinolines (DMQs), namely 2,4-DMQ, 2,6-DMQ, 2,7-DMQ, and 2,8-DMQ in the gas phase at 80 degrees C were recorded using a long variable path-length cell. DFT calculations were carried out to assign the bands in the experimentally observed spectra at the B3LYP/6-31G* level of theory. The spectral assignments particularly for the C-H stretching modes could not be made unambiguously using calculated anharmonic or scaled harmonic frequencies. To resolve this problem, a scaled force field method of assignment was used. Assignment of fundamental modes was confirmed by potential energy distributions (PEDs) of the normal modes derived by the scaled force fields using a modified version of the UMAT program in the QCPE package. We demonstrate that for large molecules such as the DMQs, the scaling of the force field is more effective in arriving at the correct assignment of the fundamentals for a quantitative vibrational analysis. An error analysis of the mean deviation of the calculated harmonic, anharmonic, and force field fitted frequencies from the observed frequency provides strong evidence for the correctness of the assignment.
Resumo:
The i.r. spectra of 1,3-thiazolidine-2-thione, ?2-selone and their N-deuteriated derivatives have been investigated in the region between 4000 and 20 cm?1. A complete assignment of the fundamental vibrational frequencies has been made based upon the normal coordinate analysis carried out using a simple Urey�Bradley force field supplemented by the valence force constants for the out-of-plane vibrations of the planar molecular skeleton. The proposed assignments are discussed in relation to the group frequencies in structurally related molecules and in terms of the computed potential energy distributions among the symmetry coordinates.
Resumo:
We consider the possibility of fingerprinting the presence of heavy additional Z' bosons that arise naturally in extensions of the standard model such as E-6 models and left-right symmetric models, through their mixing with the standard model Z boson. By considering a class of observables including total cross sections, energy distributions and angular distributions of decay leptons we find significant deviation from the standard model predictions for these quantities with right-handed electrons and left-handed positrons at root s= 800GeV. The deviations being less pronounced at smaller centre of mass energies as the models are already tightly constrained. Our work suggests that the ILC should have a strong beam polarization physics program particularly with these configurations. On the other hand, a forward backward asymmetry and lepton fraction in the backward direction are more sensitive to new physics with realistic polarization due to interesting interplay with the neutrino t-channel diagram. This process complements the study of fermion pair production processes that have been considered for discrimination between these models.
Resumo:
We report gas phase mid-infrared spectra of 1- and 2- methyl naphthalenes at 0.2 cm(-1) resolution. Assignment of observed bands have been made using scaled quantum mechanical (SQM) calculations where the force fields rather the frequencies are scaled to find a close fit between observed and calculated bands. The structure of the molecules has been optimized using B3LYP level of theory in conjunction with standard 6-311G** basis set to obtain the harmonic frequencies. Using the force constants in Cartesian coordinates from the Gaussian output, scaled force field calculations are carried out using a modified version of the UMAT program in the QCPE package. Potential energy distributions of the normal modes obtained from such calculations helped us assign the observed bands and identify the unique features of the spectra of 1- and 2-MNs which are important for their isomeric identification.
Resumo:
Infrared spectra of atmospherically and astronomically important dimethylphenanthrenes (DMPs), namely 1,9-DMP, 2,4-DMP, and 3,9-DMP, were recorded in the gas phase from 400 to 4000 cm(-1) with a resolution of 0.5 cm(-1) at 110 degrees C using a 7.2 m gas cell. DFT calculations at the B3LYP/6-311G** level were carried out to get the harmonic and anharmonic frequencies and their corresponding intensities for the assignment of the observed bands. However, spectral assignments could not be made unambiguously using anharmonic or selectively scaled harmonic frequencies. Therefore, the scaled quantum mechanical (SQM) force field analysis method was adopted to achieve more accurate assignments. In this method force fields instead of frequencies were scaled. The Cartesian force field matrix obtained from the Gaussian calculations was converted to a nonredundant local coordinate force field matrix and then the force fields were scaled to match experimental frequencies in a consistent manner using a modified version of the UMAT program of the QCPE package. Potential energy distributions (PEDs) of the normal modes in terms of nonredundant local coordinates obtained from these calculations helped us derive the nature of the vibration at each frequency. The intensity of observed bands in the experimental spectra was calculated using estimated vapor pressures of the DMPs. An error analysis of the mean deviation between experimental and calculated intensities reveal that the observed methyl C-H stretching intensity deviates more compared to the aromatic C-H and non C-H stretching bands.
Resumo:
Kinematical distributions of decay products of the top quark carry information on the polarisation of the top as well as on any possible new physics in the decay of the top quark. We construct observables in the form of asymmetries in the kinematical distributions to probe their effects. Charged-lepton angular distributions in the decay are insensitive to anomalous couplings to leading order. Hence these can be a robust probe of top polarisation. However, these are difficult to measure in the case of highly boosted top quarks as compared to energy distributions of decay products. These are then sensitive, in general, to both top polarisation and top anomalous couplings. We compare various asymmetries for their sensitivities to the longitudinal polarisation of the top quark as well as to possible new physics in the Wtb vertex, paying special attention to the case of highly boosted top quarks. We perform a chi(2) analysis to determine the regions in the plane of longitudinal polarisation of the top quark and the couplings of the Wtb vertex constrained by different combinations of the asymmetries. Moreover, we find that the use of observables sensitive to the longitudinal top polarisation can add to the sensitivity to which the Wtb vertex can be probed.
Resumo:
Kinematical distributions of decay products of the top quark carry information on the polarisation of the top as well as on any possible new physics in the decay of the top quark. We construct observables in the form of asymmetries in the kinematical distributions to probe their effects. Charged-lepton angular distributions in the decay are insensitive to anomalous couplings to leading order. Hence these can be a robust probe of top polarisation. However, these are difficult to measure in the case of highly boosted top quarks as compared to energy distributions of decay products. These are then sensitive, in general, to both top polarisation and top anomalous couplings. We compare various asymmetries for their sensitivities to the longitudinal polarisation of the top quark as well as to possible new physics in the Wtb vertex, paying special attention to the case of highly boosted top quarks. We perform a chi(2) analysis to determine the regions in the plane of longitudinal polarisation of the top quark and the couplings of the Wtb vertex constrained by different combinations of the asymmetries. Moreover, we find that the use of observables sensitive to the longitudinal top polarisation can add to the sensitivity to which the Wtb vertex can be probed.
Resumo:
Kinematical distributions of decay products of the top quark carry information on the polarisation of the top as well as on any possible new physics in the decay of the top quark. We construct observables in the form of asymmetries in the kinematical distributions to probe their effects. Charged-lepton angular distributions in the decay are insensitive to anomalous couplings to leading order. Hence these can be a robust probe of top polarisation. However, these are difficult to measure in the case of highly boosted top quarks as compared to energy distributions of decay products. These are then sensitive, in general, to both top polarisation and top anomalous couplings. We compare various asymmetries for their sensitivities to the longitudinal polarisation of the top quark as well as to possible new physics in the Wtb vertex, paying special attention to the case of highly boosted top quarks. We perform a chi(2) analysis to determine the regions in the plane of longitudinal polarisation of the top quark and the couplings of the Wtb vertex constrained by different combinations of the asymmetries. Moreover, we find that the use of observables sensitive to the longitudinal top polarisation can add to the sensitivity to which the Wtb vertex can be probed.