402 resultados para enemies
Resumo:
Genetic differentiation among plant populations and adaptation to local environmental conditions are well documented. However, few studies have examined the potential contribution of plant antagonists, such as insect herbivores and pathogens, to the pattern of local adaptation. Here, a reciprocal transplant experiment was set up at three sites across Europe using two common plant species, Holcus lanatus and Plantago lanceolata. The amount of damage by the main above-ground plant antagonists was measured: a rust fungus infecting Holcus and a specialist beetle feeding on Plantago, both in low-density monoculture plots and in competition with interspecific neighbours. Strong genetic differentiation among provenances in the amount of damage by antagonists in both species was found. Local provenances of Holcus had significantly higher amounts of rust infection than foreign provenances, whereas local provenances of Plantago were significantly less damaged by the specialist beetle than the foreign provenances. The presence of surrounding vegetation affected the amount of damage but had little influence on the ranking of plant provenances. The opposite pattern of population differentiation in resistance to local antagonists in the two species suggests that it will be difficult to predict the consequences of plant translocations for interactions with organisms of higher trophic levels.
Resumo:
Recent work has shown that the evolution of Drosophila melanogaster resistance to attack by the parasitoid Asobara tabida is constrained by a trade-off with larval competitive ability. However, there are two very important questions that need to be answered. First, is this a general cost, or is it parasitoid specific? Second, does a selected increase in immune response against one parasitoid species result in a correlated change in resistance to other parasitoid species? The answers to both questions will influence the coevolutionary dynamics of these species, and also may have a previously unconsidered, yet important, influence on community structure.
Resumo:
Organic agriculture is becoming widespread due to increased consumer demand and regulatory and political support. Organic agriculture can increase arthropod diversity but the response of pests and their natural enemies is variable. Fertiliser is an important component of agricultural systems and its effects on pests and natural enemies will influence agroecosystems. In this study, meta-analysis and vote-counting techniques were used to compare farming system (organic and conventional) and fertiliser effects on arthropod pests and their natural enemies. The meta-analyses indicated that pests generally benefitted from organic techniques, this is particularly evident when experiments were carried out on a smaller scale. Pest responses to organic and conventional fertiliser types were divergent, plant composts benefitted pest arthropods while the opposite was true for manures, this has implications for pest management. Most natural enemy groups responded positively to organic farming although this was not true for Coleopterans. Experimental scale had a prominent impact on natural enemy responses with farm scale studies showing particularly positive effects of organic agriculture on natural enemies. This suggests that it is large scale features of organic agriculture such as landscape heterogeneity that are beneficial to natural enemies. Natural enemy responses to organic fertilisers were positive indicating that field scale management practices including fertiliser can also be important in pest management.
Resumo:
Aphids are important pests of spring cereals and their abundance and the impact of their natural enemies may be influenced by fertilizer regime.2We conducted a 2-year field study investigating the effects of organic slow-release and conventional fertilizers on cereal aphids, hymenopteran parasitoids and syrphid predators and considered how the effects of fertilizers on barley morphology and colour might influence these species.3Barley yield was greater in conventionally fertilized pots. Barley morphology was also affected by treatment: vegetative growth was greater under conventional treatments. Barley receiving organic fertilizers or no fertilizer was visually more attractive to aphids compared with plants receiving conventional fertilizers.4Aphids were more abundant in conventionally fertilized barley but the reason for this increased abundance was species specific. Metopolophium dirhodum was responding to fertilizer effects on plant morphology, whereas Rhopalosiphum padi was sensitive to the temporal availability of nutrients.5Syrphid eggs were more numerous in conventionally fertilized pots, whereas the response of parasitoids appeared to be dependent on the abundance of aphids, although the number of parasitoid mummies was low in both years.6This research shows that the fertilizer treatment used can affect numerous characteristics of plant growth and colour, which can then influence higher trophic levels. This knowledge might be used to make more informed fertilizer application choices.
Resumo:
To manage agroecosystems for multiple ecosystem services, we need to know whether the management of one service has positive, negative, or no effects on other services. We do not yet have data on the interactions between pollination and pest-control services. However, we do have data on the distributions of pollinators and natural enemies in agroecosystems. Therefore, we compared these two groups of ecosystem service providers, to see if the management of farms and agricultural landscapes might have similar effects on the abundance and richness of both. In a meta-analysis, we compared 46 studies that sampled bees, predatory beetles, parasitic wasps, and spiders in fields, orchards, or vineyards of food crops. These studies used the proximity or proportion of non-crop or natural habitats in the landscapes surrounding these crops (a measure of landscape complexity), or the proximity or diversity of non-crop plants in the margins of these crops (a measure of local complexity), to explain the abundance or richness of these beneficial arthropods. Compositional complexity at both landscape and local scales had positive effects on both pollinators and natural enemies, but different effects on different taxa. Effects on bees and spiders were significantly positive, but effects on parasitoids and predatory beetles (mostly Carabidae and Staphylinidae) were inconclusive. Landscape complexity had significantly stronger effects on bees than it did on predatory beetles and significantly stronger effects in non-woody rather than in woody crops. Effects on richness were significantly stronger than effects on abundance, but possibly only for spiders. This abundance-richness difference might be caused by differences between generalists and specialists, or between arthropods that depend on non-crop habitats (ecotone species and dispersers) and those that do not (cultural species). We call this the ‘specialist-generalist’ or ‘cultural difference’ mechanism. If complexity has stronger effects on richness than abundance, it might have stronger effects on the stability than the magnitude of these arthropod-mediated ecosystem services. We conclude that some pollinators and natural enemies seem to have compatible responses to complexity, and it might be possible to manage agroecosystems for the benefit of both. However, too few studies have compared the two, and so we cannot yet conclude that there are no negative interactions between pollinators and natural enemies, and no trade-offs between pollination and pest-control services. Therefore, we suggest a framework for future research to bridge these gaps in our knowledge.
Resumo:
There are potential conflicts between food security, biodiversity conservation and ecosystem services. Currently, there are still gaps in our understanding on the links between land use, biodiversity and ecosystem services; all have implications for sustainable agriculture. To improve food productivity in an ecologically friendly manner we should consider adapting current pest control techniques from being reliant on chemical means towards a more integrated approach. However, to do this, farmers and land owners require more information in order to make informed decisions. This brief review explores field level and landscape scale impacts on aphid control by their natural enemies. This will be done by exploring the effects of local field margin flower strips and two key landscape scale factors, winter wheat and lowland calcareous grasslands on aphids and their natural enemies. Research questions which need answering are discussed.
Resumo:
The foraging strategies of two natural enemies of the peach-potato aphid Myzus persicae: the seven-spot ladybird Coccinella septempunctata and the parasitoid wasp Diaeretiella rapae, were investigated. Specifically the roles of plant semiochemicals in the location of plants infested with M. persicae by these natural enemies were examined. I investigated the olfactory responses of female C. septempunctata to volatiles collected from M. persicae and four Brassica cultivars; Brassica rapa, B. juncea, B. napus cultivar ‘Apex’ and B. napus cultivar ‘Courage’ and wild-type Arabidopsis thaliana that were: undamaged, previously infested by M. persicae and infested with M. persicae. C. septempunctata showed no attraction to volatiles from M. persicae alone. C. septempunctata significantly changed its searching behaviour in response to plant volatiles from B. rapa, B. napus cv. ‘Apex’ and Arabidopsis infested with M. persicae. C. septempunctata was also found to display a significant turning bias when foraging on a branching horizontal wire stem. A model was developed to investigate how turning biases affect the foraging efficiency of C. septempunctata in dichotomous branched environments. Simulations using this model indicated that turning biases could potentially increase searching efficiency. D. rapae showed a significant preference for volatiles from M. persicae infested wild-type Arabidopsis but no preference to volatiles from M. persicae alone or M. persicae honeydew. Volatile emissions by Arabidopsis were shown to be localised to the area of aphid-infestation rather than systemic. Using gas chromatography plants infested with M. persicae were shown to emit a quantitatively different volatile blend than undamaged plants. In experiments with jasmonate mutants of Arabidopsis the jasmonate (octadecanoid) wound response pathway was implicated as being important for the production of M. persicae induced volatiles, attractive to D. rapae. Other wound response pathways were also found to be involved in the production of the full blend of M. persicae induced volatiles.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The absence of natural enemies often allows exotic pests to reach densities that are much higher than normally occur in their native habitats. When Solenopsis fire ants were introduced into the United States, their numerous natural enemies were left behind in South America. To compare intercontinental fire ant densities, we selected 13 areas in South America and another 12 areas in North America. Sample areas were paired with weather stations and distributed across a broad range of climatic conditions. In each area, we measured fire ant densities at 5 preselected roadside sites that were at least 5 km apart. At each site, we also measured foraging activity, checked for polygyne colonies, and recorded various kinds of environmental data. In most areas, we also measured fire ant densities in lawns and grazing land. Fire ant populations along roadsides in North America were 4-7 times higher than fire ant populations in South America. Similar intercontinental differences were found in lawns and on grazing lands. These intercontinental differences in fire ant abundance were not associated with sampling conditions, seasonal variability, habitat differences, or the frequency of polygyny. Although several correlations were found with long-term weather conditions, careful inspection of the data suggests that these correlations were probably more coincidental than causal. Cultural differences in roadside maintenance may explain some of the intercontinental differences in fire ant abundance, but they did not account for equivalent intercontinental differences in grazing land and mowed lawns. Bait tests showed that competition with other ants was much more important in South America; however, we were not able to determine whether this was a major cause of intercontinental differences or largely a consequence of other factors such as the numerous pathogens and parasites that are found in South America. Because this study was correlational, we were unable to determine the cause(s) of the large intercontinental difference in fire ant abundance that we observed. However, we were able to largely exclude a number of possible explanations for the differences, including sampling, season, polygyny, climate, and aspects of habitat. By a process of elimination, escape from natural enemies remains among the most likely explanations for the unusually high densities of fire ants found in North America.
Resumo:
Cultivation of strawberry in plastic tunnels has increased considerably in Norway and in southeastern Brazil, mainly in an attempt to protect the crop from unsuitable climatic factors and some diseases as well as to allow growers to expand the traditional production season. It has been hypothesized that cultivation under tunnels could increase the incidence of one of its major pests in many countries where strawberry is cultivated, including Norway and Brazil, the two spotted spider mite, Tetranychus urticae. The objective of this study was to evaluate the effect of the use of tunnels on the incidence of T. urticae and on its natural enemies on strawberry in two ecologically contrasting regions, Norway (temperate) and southeastern Brazil (subtropical). In both countries, peak densities of T. urticae in tunnels and in the open fields were lower than economic thresholds reported in the literature. Factors determining that systematically seem to be the prevailing relatively low temperature in Norway and high relative humidity in both countries. The levels of occurrence in Norway and Brazil in 2010 were so low that regardless of any potential effect of the use of tunnel, no major differences were observed between the two cropping systems in relation to T. urticae densities. In 2009 in Norway and in 2011 in Brazil, increase in T. urticae population seemed to have been restrained mainly by rainfall in the open field and by predatory mites in the tunnels. Phytoseiids were the most numerous predatory mite group of natural occurrence on strawberry, and the prevalence was higher in Brazil, where the most abundant species on strawberry leaves were Neoseiulus anonymus and Phytoseiulus macropilis. In Norway, the most abundant naturally occurring phytoseiids on strawberry leaves were Typhlodromus (Anthoseius) rhenanus and Typhlodromus (Typhlodromus) pyri. Predatory mites were very rare in the litter samples collected in Norway. Infection rate of the pest by the fungus Neozygites floridana (Neozygitaceae) was low. The results of this work suggest that in Norway the use of tunnels might not affect the population densities of T. urticae on strawberry in years of lower temperatures. When temperature is not a limiting factor for the development of T. urticae in that country (apparently always the case in southern Brazil), strawberry cultivation in the tunnels may allow T. urticae to reach higher population levels than in open fields (because of the provided protection from the direct impact of rainfall), but natural enemies may prevent higher levels from being reached.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Brazilian populations of the pathogenic fungus Neozygites floridana (Weiser & Muma) Remaudiere & S. Keller (Entomophthoromycotina: Entomophthorales) and the predatory mite Phytoseiulus longipes Evans (Acari: Phytoseiidae) are potential candidates for introduction into Africa for classical biological control of the tomato red spider mite, Tetranychus evansi Baker & Pritchard (Acari: Tetranychidae). The efficiency of these natural enemies against T. evansi has been demonstrated under laboratory conditions, but little is known about their performance on native Solanaceae in the field. The American nightshade, Solanum americanum Mill., is native to the Americas and may serve as an alternative host plant for T. evansi and its natural enemies in the absence of tomato plants. In this work, we studied the population dynamics of T. evansi and its natural enemies on S. americanum in a screen house, semi-field and field plots in Recife, Pernambuco, Brazil, to evaluate the potential of natural enemies for controlling T. evansi. Of the four natural enemies found in association with T. evansi, only N. floridana and P. longipes were clearly associated with the reduction of the populations of T. evansi. Neozygites floridana was observed in a screen house, semi-field and field plots, but P. longipes was only detected in the semi-field plots. Increases in the population of T. evansi were always followed by increases in the density of one of these natural enemies, suggesting that they were important factors regulating T. evansi populations on S. americanum. The presence of this host plant near the release sites in Africa thus might increase the chances for the permanent establishment of these natural enemies.