22 resultados para endoparasite
Resumo:
With the aim of studying the endoparasite fauna of horses from the Formiga city, located in center-west region of the state of Minas Gerais, 25 animals that were naturally infected with helminths were evaluated. By means of parasitological necropsies, different endoparasites were found. The subfamily Cyathostominae presented the highest incidence, followed by Trichostrongylus axei, Oxyuris equi, Triodontophorus serratus, Strongyloides westeri, Strongylus edentatus, Habronema muscae, Parascaris equorum, Probstmayria vivipara, Strongylus vulgaris, Gasterophilus nasalis, Anoplocephala magna and Anoplocephala perfoliata. In the present study, if the species Probstmayria vivipara was not considered in the prevalence, the frequency of Cyathostominae was equivalent to 94.85%. The results obtained in this study allowed us to detect and identify different species of helminths in horses, and confirmed the high incidence of nematodes belonging to the subfamily Cyathostominae in the center-west region of Minas Gerais.
Resumo:
Multiple infections of managed honeybee, Apis mellifera, colonies are inevitable due to the ubiquitous ectoparasitic mite Varroa destructor and might be an underlying cause of winter losses. Here we investigated the role of adult small hive beetles, Aethina tumida, alone and in combination with V. destructor for winter losses and for infections with the microsporidian endoparasite Nosema ceranae. We found no significant influence of A. tumida and V destructor alone or in combination on the numbers of N. ceranae spores. Likewise, A. tumida alone had no significant effects on winter losses, which is most likely due to the observed high winter mortality of the adult beetles. Therefore, our data suggest that A. tumida is unlikely to contribute to losses of overwintering honeybee colonies. However, high losses occurred in all groups highly infested with V. destructor, supporting the central role of the mite for colony losses.
Resumo:
To provide baseline parasitological data for health surveillance in free-ranging Alpine ibex (Capra ibex ibex), we assessed the endoparasite population and level of parasitism in apparently healthy ibex. Faecal samples from 148 ibex were collected between 2006 and 2008 in two different Swiss ibex colonies. They were analysed by coprology, including combined sedimentation/flotation method, sedimentation method, Baermann funnel technique and Ziehl-Neelsen staining. Gastrointestinal parasites and lungworms were identified in 100% and 81.8% of the examined animals, respectively. Highest prevalences were recorded for gastrointestinal strongylids other than Nematodirus/Marshallagia spp. (100%), Eimeria spp. (100%), Muellerius spp. (79.8%) and Nematodirus/Marshallagia spp. (79.0%). We report for the first time Cryptosporidium sp. in free-ranging Alpine ibex and Cystocaulus spp. in free-ranging ibex from Switzerland. On average, ibex were infected with 3.9 different parasites taxa (range: 1-8). Parasite prevalence and diversity varied significantly between sexes, study sites and seasons. Parasite egg output was low in 95.7% and moderate in 5.3% of the samples. Overall, the results indicate that Alpine ibex are widely infected with endoparasites and suggest that multiple infections are very common in apparently healthy populations. Furthermore, our data underline the potential influence of factors such as sex, study site and season on parasitological findings.
Resumo:
Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels
Resumo:
Interactions between pesticides and parasites are believed to be responsible for increased mortality of honey bee (Apis mellifera) colonies in the northern hemisphere. Previous efforts have employed experimental approaches using small groups under laboratory conditions to investigate influence of these stressors on honey bee physiology and behaviour, although both the colony level and field conditions play a key role for eusocial honey bees. Here, we challenged honey bee workers under in vivo colony conditions with sublethal doses of the neonicotinoid thiacloprid, the miticide tau-fluvalinate and the endoparasite Nosema ceranae, to investigate potential effects on longevity and behaviour using observation hives. In contrast to previous laboratory studies, our results do not suggest interactions among stressors, but rather lone effects of pesticides and the parasite on mortality and behaviour, respectively. These effects appear to be weak due to different outcomes at the two study sites, thereby suggesting that the role of thiacloprid, tau-fluvalinate and N. ceranae and interactions among them may have been overemphasized. In the future, investigations into the effects of honey bee stressors should prioritize the use of colonies maintained under a variety of environmental conditions in order to obtain more biologically relevant data.
Resumo:
Parasitoid wasps use a variety of mechanisms to alter their host's physiology to the benefit of the developing endoparasite inside the host larva. Association of certain wasps with viruses and virus-like particles (VLPs) that contribute to their success in parasitism is one of the fascinating evolutionary adaptations conferring active or passive protection for the endoparasite from the host immune system. Venturia canescens has been shown to produce VLPs that provide protection for the developing parasitoid egg inside the host, Ephestia kuehniella. Here, we report on the presence of a novel small RNA-containing virus from V. canescens, designated as VcSRV, occurring in the ovaries of the wasp. The virus particles are found together with VcVLPs in the lumen of the calyx region of the ovaries and are injected together with the egg and VcVLPs into E kuehniella larvae where they enter hemocytes. Alignment of the RNA-dependent RNA polymerase gene of VcSRV indicates that the virus most likely belongs to the recently described genus Iflavirus. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Parasite infracommunities of the wrasse Coris batuensis (Bleeker, 1857) were analysed, and the relationship between endoparasites, diet, and host body weight inferred. Thirty-two fish were collected from Lizard Island, Australia. Percentage frequency of occurrence of prey categories in the gut was determined and abundance, prevalence and species richness of parasites were calculated. Fish mainly ate snails, bivalves and crustaceans and this did not vary with body weight. Thirty-one fish were parasitised with at least one of 21 taxa of parasites (4 ectoparasite and 17 endoparasite species), with an average of 4 species and 47 individuals per host. Tetraphyllidean cestode larvae were the most common and abundant group. Parasite life cycles are not known in detail, but small crustaceans, such as copepods and amphipods, are likely to be intermediate hosts for the cestodes, nematodes and digeneans found in C. batuensis. Molluscs, although frequent in the diet, may not be transmitting any parasite species. Numbers of prey and parasite species richness were not correlated. Composition, abundance and species richness of the parasite fauna were similar in hosts with different body weight, corresponding with C. batuensis having a similar diet throughout life. © Queensland Museum.