493 resultados para endo-inulinase
Resumo:
Although premature infants are increasingly surviving the neonatal period, up to one-third develop bronchopulmonary dysplasia (BPD). Despite evidence that bacterial colonization of the neonatal respiratory tract by certain bacteria may be a risk factor in BPD development, little is known about the role these bacteria play. The aim of this study was to investigate the use of culture-independent molecular profiling methodologies to identify potential etiological agents in neonatal airway secretions. This study used terminal restriction fragment length polymorphism (T-RFLP) and clone sequence analyses to characterize bacterial species in endo-tracheal (ET) aspirates from eight intubated pre-term infants. A wide range of different bacteria was identified in the samples. Forty-seven T-RF band lengths were resolved in the sample set, with a range of 0-15 separate species in each patient. Clone sequence analyses confirmed the identity of individual species detected by T-RFLP. We speculate that the identification of known opportunistic pathogens including S. aureus, Enterobacter sp., Moraxella catarrhalis, Pseudomonas aeruginosa and Streptococcus sp., within the airways of pre-term infants, might be causally related to the subsequent development of BPD. Further, we suggest that culture-independent techniques, such as T-RFLP, hold important potential for the characterization of neonatal conditions, such as BPD.
Resumo:
1,3-beta-Glucan depolymerizing enzymes have considerable biotechnological applications including biofuel production, feedstock-chemicals and pharmaceuticals. Here we describe a comprehensive functional characterization and low-resolution structure of a hyperthermophilic laminarinase from Thermotoga petrophila (TpLam). We determine TpLam enzymatic mode of operation, which specifically cleaves internal beta-1,3-glucosidic bonds. The enzyme most frequently attacks the bond between the 3rd and 4th residue from the non-reducing end, producing glucose, laminaribiose and laminaritriose as major products. Far-UV circular dichroism demonstrates that TpLam is formed mainly by beta structural elements, and the secondary structure is maintained after incubation at 90 degrees C. The structure resolved by small angle X-ray scattering, reveals a multi-domain structural architecture of a V-shape envelope with a catalytic domain flanked by two carbohydrate-binding modules. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
Partindo de ciclopentadieno, ciclohexadieno, p-benzoquinona e 2,5-dibromo-pbenzoquinona, os adutos 1, 5, 30 e 31 foram sintetizados. Os adutos 1, 5 e 30 foram utilizados como produtos de partida para a síntese de 13 (treze) novos compostos, em sua maioria com potenciais características para apresentarem atividade biológica inibidora de glicosidases e reguladora da liberação de Insulina no sangue. O aduto 31 é inédito na literatura até o momento. Cinco novas propostas de mecanismos são apresentadas. Os álcoois racêmicos 6 e 29 foram submetidos a reações de transesterificação catalisadas por lipase de Pseudomonas cepacia em diferentes preparações e seus enantiômeros separados com enantiosseletividade (E) maior que 100 em todos os casos. Este processo resultou, também, na obtenção dos respectivos acetatos 43 e 44 enantiomericamente puros e com excelentes rendimentos químicos. Os compostos 6, 29 e 34 depois de terem suas estruturas moleculares resolvidas através dos métodos espectroscópicos de rotina, tiveram suas estruturas moleculares calculadas pelo método ab initio e por Funcionais de Densidade. As geometrias otimizadas foram submetidas ao método GIAO para o cálculo dos tensores de blindagem magnética isotrópica. Estes cálculos mostraram-se eficazes na descrição dos deslocamentos químicos da maioria dos átomos, incluindo os dos anéis ciclopropanos presentes nas estruturas moleculares de cada composto. Algumas dificuldades foram encontradas para a descrição do sistema vinílico halogenado dos álcoois 6 e 29. Foram utilizadas moléculas modelo para verificar a extensão de tais dificuldades.
Resumo:
Este trabalho relata a síntese de uma série de novos ligantes quirais (+) e (-)-syn-1,3-aminoálcoois derivados do norbornano. Através da reação de transesterificação enzimática com a lípase da Candida rugosa em acetato de vinila do álcool racêmico 7,7-dimetoxi-1,4,5,6-tetraclorobiciclo[2.2.1]heptan-5-en-2-ol, (±)-3, foram obtidos os álcoois quirais (+)-3 e (-)-3 (Esquema 1). Através da reação de redução e descloração destes álcoois com Na0/NH3/etanol foram obtidos os respectivos álcoois (+)-4 e (-)-4 (Esquema 2). Os álcoois quirais (+)-4 e (-)-4 foram utilizados como produtos de partida para a síntese dos 1,3-aminoálcoois quirais (+)-9 e (-)-9 em 5 etapas. Deste modo, a partir destes aminoálcoois (9), foi possível sintetizar 12 novos compostos (Esquema 2), todos inétidos na literatura. Os 1,3-aminoálcoois 10, 11, 13, 14 e 15 foram empregados como catalisadores quirais na adição enantiosseletiva de ZnEt2 ao benzaldeído. Excelentes rendimentos e excessos enantioméricos (até 91%) foram obtidos. A relação entre a configuração absoluta do 1-fenilpropanol com a configuração do carbono ligado ao grupo hidroxila dos ligantes foi estudada e, de acordo, com a enantiosseletividade observada foi sugerido um mecanismo para a reação Os produtos com esqueleto ciclopentila são importantes compostos com potencial atividade biológica, fazendo parte da estrutura de prostaglandinas, agentes antitumorais e inibidores da glicosidase. Portanto, nós decidimos usar o acetato clorado quiral 2 para preparar ciclopentanóides quirais altamente funcionalizados. Para isso, o acetato clorado quiral 2 foi submetido à oxidação usando uma quantidade catalítica de RuCl3 anidro na presença de NaIO4 obtendo-se a dicetona 16 (Esquema 3). A dicetona 16 foi clivada com H2O2 em meio alcalino fornecendo os diácidos 17a e 17b, que foram esterificados in situ com excesso de CH2N2 para fornecer uma mistura do hidroxi e acetoxi diéster 18 e 19, respectivamente. A redução da mistura 18 e 19 ou da mistura 17a e 17b com BH3.THF fornece a lactona 20 com excelentes rendimentos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The yeast Kluyveromyces marxianus var. bulgaricus produced large amounts of extracellular inulinase activity when grown on inulin, sucrose, fructose and glucose as carbon source, This protein has been purified to homogeneity by using successive DEAE-Trisacryl Plus and Superose 6 HR 10/30 columns. The purified enzyme showed a relative molecular weight of 57 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 77 kDa by gel filtration in Superose 6 HR 10/30, Analysis by SDS-PAGE showed a unique polypeptide band with Coomassie Blue stain and nondenaturing PAGE of the purified enzyme obtained from media with different carbon sources showed the band, too, when stained for glucose oxidase activity, the optimal hydrolysis temperature for sucrose, raffinose and inulin was 55 degrees C and the optimal pH for sucrose was 4.75, the apparent K-m values for sucrose, raffinose and inulin are 4.58, 7.41 and 86.9 mg/ml, respectively, Thin layer chromatography showed that inulinase from K. marxianus var. bulgaricus was capable of hydrolyzing different substrates (sucrose, raffinose and inulin), releasing monosaccharides and oligosaccharides, the results obtained suggest the hypothesis that enzyme production was constitutive.
Resumo:
The inulinase production by yeast K marxianus var. bulgaricus growing in yacon extract was investigated. The microorganism showed good development in yacon, higher enzymatic activities were achieved at 30% and 40% (v/v) of extract. The cultivation temperature (20, 25, 30, 35, 40 degreesC) neither influenced the growth or the enzymatic activity. The optimum cultivation pH was 3.5. The highest activity was observed at 60 degreesC and pH 4.0. At temperature of 55 C and 60 C occurred sharp decrease in the enzyme activity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The crude cell-free medium from a culture of Kluyveromyces marxianus var. bulgaricus was immobilized in a gelatin-water support, with an immobilization yield of 82.60% for inulinase activity. The optimum pH for both free and immobilized inulinase was the same (3.5) and the optimum temperatures were 55 degrees C for the free and 60 degrees C for the immobilized enzyme. The Arrhenius plots were linear and activation energies were 56.20 (free enzyme) and 20.27 kj/mol K (immobilized enzyme). The kinetic parameters were calculated by Lineweaver-Burk plots and the V-max and K-m were 37.60 IU/mg protein and 61.83 mM for the free inulinase and 31.45 IU/mg protein and 149.28 mM for the immobilized enzyme, respectively. The operational stability of the immobilized inulinase was studied in a continuous fixed-bed column reactor for 33 days, at the end of which the sucrose conversion was 58.12%. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work studied the influence of nitrogen source and sucrose concentration in the feeding medium for biomass and inulinase production by Kluyveromyces marxianus var. bulgaricus. The results show that the best nitrogen source was a combination of 5 g/L of yeast extract and 10 g/L of peptone. Both cellular growth and enzymatic activity increased with sucrose concentration in the feeding medium (from 200 to 500 g/L). When the sucrose concentration reached 600 g/L, both cellular growth and enzymatic activity decreased.
Resumo:
Aspergillus niger - 245 a strain isolated from soil samples showed good beta -fructosidase activity when inoculated in medium formulated with dahlia extract tubers. The enzyme was purified by precipitation in ammonium sulphate and percolated in DEAE-Sephadex A-50 and CM-cellulose columns, witch showed a single peack in all the purification steps, maintaining the I/S ratio between 0.32 to, 0.39. Optimum pH for inulinase activity (I) was between 4.0 - 4.5 and for invertase activity (S) between 2.5 and 50. The optimum temperature was 60 degrees .C for both activities and no loss in activity was observed when it was maintained at this temperature for 30 min. The K-m value was 1.44 and 5.0 respectively, for I and S and V-m value 10.48 and 30.55 respectively. The I activity was strongly inhibited by Hg2+ and Ag+ and 2 x 10(-3) M of glucose, but not by fructose at the same concentration. The enzyme showed an exo-action mechanism acting on the inulin of different origins. In assay conditions total hydrolysis of all the frutans was obtained although it has shown larger activity on the chicory inulin than that one from artichoke Jerusalem and dahlia, in the first 30 min. The obtained results suggested that the enzyme presented good potential for industrial application in the preparing the fructose syrups.
Resumo:
An endoxylanase from Streptomyces halstedii was stabilized by multipoint covalent immobilization on glyoxyl-agarose supports. The immobilized enzyme derivatives preserved 65% of the catalytic activity corresponding to the one of soluble enzyme that had been immobilized. These immobilized derivatives were 200 times more stable 200 times more stable than the one-point covalently immobilized derivative in experiments involving thermal inactivation at 60 °C. The activity and stability of the immobilized enzyme was higher at pH 5.0 than at pH 7.0. The optimal temperature for xylan hydrolysis was 10 °C higher for the stabilized derivative than for the non-stabilized derivative. On the other hand, the highest loading capacity of activated 10% agarose gels was 75 mg of enzyme per mL of support. To prevent diffusional limitations, low loaded derivatives (containing 0.2 mg of enzyme per mL of support) were used to study the hydrolysis of xylan at high concentration (close to 1% (w/v)). 80% of the reducing sugars were released after 3 h at 55 °C. After 80% of enzymatic hydrolysis, a mixture of small xylo-oligosaccharides was obtained (from xylobiose to xylohexose) with a high percentage of xylobiose and minimal amounts of xylose. The immobilized-stabilized derivatives were used for 10 reaction cycles with no loss of catalytic activity. © 2013 Elsevier Ltd. All rights reserved.