114 resultados para enantioselectivity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thioridazine (THD) is a commonly prescribed phenotiazine neuroleptic drug, which is extensively biotransformed in the organism producing as main metabolites sulfoxides and a sulfone by sulfur oxidation Significant differences have been observed in the activity of the THD enantiomers as well as for its main metabolites, and enantioselectivity phenomena have been proved in the metabolic pathway. Here the assignment of the absolute configuration at the sulfur atom of enantiomeric THD-2-sulfoxide (THD-2-SO) has been carried out by circular dichroism (CD) spectroscopy The stereoisomers were separated by HPLC on Chiralpak AS column, recording the CD spectra for the two collected enantiomeric fractions The theoretical electronic CD spectrum has been obtained by the TDDFT/B3LYP/6-31G*. as Boltzmann averaging of the contributions calculated for the most stable conformations of the drug The comparison of the simulated and experimental spectra allowed the absolute configuration at the sulfur atom of the four THD-2-SO stereoisomers to be assigned The developed method should be useful for a reliable correlation between stereochemistry and activity and/or toxicity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple enantioselective method for the determination of praziquantel (PZQ) and trans-4-hydroxypraziquantel (4-OHPZQ) in human plasma was developed and validated by high-performance liquid chromatography/mass spectrometry. The plasma samples were prepared by liquid-liquid extraction using a mixture of methyl-tert-butylether/dichloromethane (2:1, v/v) as extraction solvent. The direct resolution of PZQ and 4-OHPZQ enantiomers was performed on a Chiralpak AD column using hexane-isopropanol (75:25, v/v) as the mobile phase. Diazepam was used as internal standard. The method described here is simple and reproducible. The quantitation limit of 1.25 ng/ml for each PZQ enantiomer and of 12.5 ng/ml for each 4-OHPZQ enantiomer permits the use of the method in studies investigating the kinetic disposition of a single dose of 1.5g racemic PZQ. Enantioselectivity in the kinetic disposition of PZQ and 4-OHPZQ was observed in the clinical study. with the demonstration of a higher proportion of the (+)-(S)-PZQ and (-)-(R)-4-OHPZQ enantiomers in plasma. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An enantioselective high-performance liquid chromatographic method for the analysis of carvedilol in plasma and urine was developed and validated using (-)-menthyl chloroformate (MCF) as a derivatizing reagent. Chloroform was used for extraction, and analysis was performed by HPLC on a C18 column with a fluorescence detector. The quantitation limit was 0.25 ng/ml for S(-)-carvedilol in plasma and 0.5 ng/ml for R(+)-carvedilol in plasma and for both enantiomers in urine. The method was applied to the study of enantioselectivity in the pharmacokinetics of carvedilol administered in a multiple dose regimen (25mg/12h) to a hypertensive elderly female patient. The data obtained demonstrated highest plasma levels for the R(+)-carvedilol(AUCSS 75.64 vs 37.29ng/ml). The enantiomeric ratio R(+)/S(-) was 2.03 for plasma and 1.49 0 - 12 for urine (Aeo-12 17.4 vs 11.7 pg). Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tramadol (T) is available as a racemic mixture of (+)-trans-T and (-)-trans-T. The main metabolic pathways are O-demethylation and N-demethylation, producing trans-O-desmethyltramadol (M1) and trans-N-desmethyltramadol (M2) enantiomers, respectively. The analgesic effect of T is related to the opioid activity of (+)-trans-T and (+)-M1 and to the monoaminergic action of (+/-)-trans-T. This is the first study using tandem mass spectrometry as a detection system for the simultaneous analysis of trans-T, M1, and M2 enantiomers. The analytes were resolved on a Chiralpak (R) AD column using hexane: ethanol (95.5:4.5, v/v) plus 0.1% diethylamine as the mobile phase. The quantitation limits were 0.5 ng/ml for trans-T and M1 and 0.1 ng/ml for M2. The method developed and validated here was applied to a pharmacokinetic study in rats. Male Wistar rats (n = 6 at each time point) received a single oral dose of 20 mg/kg racemic trans-T. Blood samples were collected up to 12 h after drug administration. The kinetic disposition of trans-T and M2 was enantioselective (AUC((+)/(-)) ratio = 4.16 and 6.36, respectively). The direction and extent of enantioselectivity in the pharmacokinetics of trans-T and M2 in rats were comparable to data previously reported for healthy volunteers, suggesting that rats are a suitable model for enantioselective studies of trans-T pharmacokinetics. Chirality 23: 287-293, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

center dot Citalopram (CITA) pharmacokinetics are enantioselective in healthy volunteers and the metabolism of (+)-(S)-CITA to (+)-(S)-DCITA is dependent on CYP2C19. Omeprazole is a potent CYP2C19 inhibitor. WHAT THIS STUDY ADDS center dot This study indicates that omeprazole induces a loss of enantioselectivity in the CITA pharmacokinetics because of the selective inhibition of (+)-(S)-CITA metabolism. AIM The study assessed the influence of omeprazole on the kinetic disposition of the (+)-(S)-citalopram (CITA) and (-)-(R)-CITA enantiomers in healthy volunteers. METHODS In a cross-over study, healthy volunteers (n = 9) phenotyped as extensive metabolizers of CYP2C19 and CYP2D6 and with an oral midazolam clearance ranging from 10.9 to 149.3 ml min-1 kg-1 received a single dose of racemic CITA (20 mg orally) in combination or not with omeprazole (20 mg day-1 for 18 days). Serial blood samples were collected up to 240 h after CITA administration. CITA and demethylcitalopram (DCITA) enantiomers were analyzed by LC-MS/MS using a Chiralcel (R) OD-R column. RESULTS The kinetic disposition of CITA was enantioselective in the absence of treatment with omeprazole, with the observation of a greater proportion of plasma (-)-(R)-CITA [AUC S : R ratio of 0.53 (95% CI 0.41, 0.66) for CITA and 1.08 (95% CI 0.80, 1.76) for DCITA] than (+)-(S)-CITA. Racemic CITA administration to healthy volunteers in combination with omeprazole showed a loss of enantioselectivity in CITA pharmacokinetics with an increase of approximately 120% in plasma (+)-(S)-CITA concentrations [AUC S : R ratio of 0.95 (95% CI 0.72, 1.10) for CITA and 0.95 (95% CI 0.44, 1.72) for DCITA]. CONCLUSIONS The administration of multiple doses of omeprazole preferentially inhibited (+)-(S)-CITA metabolism in healthy volunteers. Although omeprazole increased plasma concentrations of (+)-(S)-CITA by approximately 120%, it is difficult to evaluate the clinical outcome because the range of plasma CITA concentrations related to maximum efficacy and minimum risk of adverse effects has not been established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the work presented in this thesis was the development of an innovative approach for the separation of enantiomers of secondary alcohols, combining the use of an ionic liquid (IL) - both as solvent for conducting enzymatic kinetic resolution and as acylating agent - with the use of carbon dioxide (CO2) as solvent for extraction. Menthol was selected for testing this reaction/separation approach due to the increasing demand for this substance, which is widely used in the pharmaceutical, cosmetics and food industries. With a view to using an ionic ester as acylating agent, whose conversion led to the release of ethanol, and due to the need to remove this alcohol so as to drive reaction equilibrium forward, a phase equilibrium study was conducted for the ehtanol/(±)-menthol/CO2 system, at pressures between 8 and 10 MPa and temperatures between 40 and 50 oC. It was found that CO2 is more selective towards ethanol, especially at the lowest pressure and highest temperature tested, leading to separation factors in the range 1.6-7.6. The pressure-temperature-composition data obtained were correlated with the Peng-Robinson equation of state and the Mathias-Klotz-Prausnitz mixing rule. The model fit the experimental results well, with an average absolute deviation (AAD) of 3.7 %. The resolution of racemic menthol was studied using two lipases, namely lipase from Candida rugosa (CRL) and immobilized lipase B from Candida antarctica (CALB), and two ionic acylating esters. No reaction was detected in either case. (R,S)-1-phenylethanol was used next, and it was found that with CRL low, nonselective, conversion of the alcohol took place, whereas CALB led to an enantiomeric excess (ee) of the substrate of 95%, at 30% conversion. Other acylating agents were tested for the resolution of (±)-menthol, namely vinyl esters and acid anhydrides, using several lipases and varying other parameters that affect conversion and enantioselectivity, such as substrate concentration, solvent and temperature. One such acylating agent was propionic anhydride. It was thus performed a phase equilibrium study on the propionic anhydride/CO2 system, at temperatures between 35 and 50 oC. This study revealed that, at 35 oC and pressures from 7 MPa, the system is monophasic for all compositions. The enzymatic catalysis studies carried out with propionic anhydride revealed that the extent of noncatalyzed reaction was high, with a negative effect on enantioselectivity. These studies showed also that it was possible to reduce considerably the impact of the noncatalyzed reaction relative to the reaction catalyzed by CRL by lowering temperature to 4 oC. Vinyl decanoate was shown to lead to the best results at conditions amenable to a process combining the use of supercritical CO2 as agent for post-reaction separation. The use of vinyl decanoate in a number of IL solvents, namely [bmim][PF6], [bmim][BF4], [hmim][PF6], [omim][PF6], and [bmim][Tf2N], led to an enantiomeric excess of product (eep) values of over 96%, at about 50% conversion, using CRL. In n-hexane and supercritical CO2, reaction progressed more slowly.(...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La separació d’enantiòmers (isòmers òptics) és molt important en molts diversos camps, com les síntesis quirals, biologia, i en el camp de la farmacologia especialment. És per això, que es fa necessari de disposar de tècniques i mètodes analítics ràpids, fiables i sensibles per a la separació d’enantiòmers. La present tesi s’emmarca en el camp de la separació d’enantiòmers, concretament en la preparació de fases estacionàries quirals per al seu ús en cromatografia liquida. En aquest sentit, s’ha desenvolupat la síntesi i caracterització de molècules polimèriques quirals derivades de l’aminoàcid L-prolina que incorporades en matrius de gel de sílice poden constituïr columnes quirals per a la separació d’enantiòmers per cromatografia liquida. S’han estudiat les característiques enantioselectives d’aquests nous materials en la separació de molècules quirals, trobant-se ésser satisfactòriament enantioselectius. L’interès que suscita l’obtenció d’enantiòmers a gran escala fa que la recerca s’orienti a la recerca de materials amb elevada capacitat de càrrega, és a dir, que puguin donar lloc a la separació d’elevades quantitats d’enantiòmers. Amb aquesta finalitat s’han dut a terme assaigs de capacitat de càrrega, que han posat de manifest la possible aplicació d’aquests materials a la separació preparativa d’enantiòmers. També s’ha parat especial atenció a l’estudi de les característiques de la matriu de gel de sílice, assajant-se altres materials de sílice més porosos i que permeten així treballar amb fluxos més elevats tot reduint-ne el temps d’anàlisi i els costos associats a la separació preparativa d’enantiòmers. L'estudi conformacional d'aquests nous selectors també ha estat contemplat per tal d'explicar l'enantioselectivitat específica que s'observa en certs dissolvents orgànics en els qual es duu a terme la separació dels enantiòmers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concentrations of total (R) + (S) and of the enantiomers (R) and (S) of thioridazine and metabolites were measured in 21 patients who were receiving 100 mg thioridazine for 14 days and who were comedicated with moclobemide (450 mg/day). Two patients were poor metabolizers of dextromethorphan and one was a poor metabolizer of mephenytoin. Cytochrome P450IID6 (CYP2D6) is involved in the formation of thioridazine 2-sulfoxide (2-SO) from thioridazine and also probably partially in the formation of thioridazine 5-sulfoxide (5-SO), but not in the formation of thioridazine 2-sulfone (2-SO2) from thioridazine 2-SO. Significant correlations between the mephenytoin enantiomeric ratio and concentrations of thioridazine and metabolites suggest that cytochrome P450IIC19 could contribute to the biotransformation of thioridazine into yet-unknown metabolites, other than thioridazine 2-SO, thioridazine 2-SO2, or thioridazine 5-SO. An enantioselectivity and a large interindividual variability in the metabolism of thioridazine have been shown: measured (R)/(S) ratios of thioridazine, thioridazine 2-SO fast eluting (FE), thioridazine 2-SO slow eluting (SE), thioridazine 2-SO (FE+SE), thioridazine 2-SO2, thioridazine 5-SO(FE), and thioridazine 5-SO(SE) were (mean +/- SD) 3.48 +/- 0 .93 (range, 2.30 to 5.80), 0.45 +/- 0.22 (range, 0.21 to 1.20), 2.27 +/- 8.1 (range, 6.1 to 40.1), 4.64 +/- 0.68 (range, 2.85 to 5.70), 3.26 +/- 0.58 (range, 2.30 to 4.30), 0.049 +/- 0.019 (range, (0.021 to 0.087), and 67.2 +/- 66.2 (range, 16.8 to 248), respectively. CYP2D6 is apparently involved in the formation of (S)-thioridazine 2-SO(FE), (R)-thioridazine 2-SO(SE), and also probably (S)-thioridazine 5-SO(FE) and (R)-thioridazine 5-SO(SE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution or in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continuous internal flow. In such conditions, the system can evolve, for certain reaction and system parameters, toward a chiral stationary state; that is, the system is able to reach a bifurcation point leading to SMSB. Numerical simulations in which reasonable chemical parameters have been used suggest that an ade- quate scenario for such a SMSB would be that of abyssal hydrothermal vents, by virtue of the typical temper- ature gradients found there and the role of inorganic solids mediating chemical reactions in an enzyme-like role. Key Words: Homochirality Prebiotic chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An overview of the synthesis and applications of chiral 2,3-epoxy alcohols containing unsaturated chains is presented. One of the fundamental synthetic routes to these compounds is Sharpless asymmetric epoxidation, which is reliable, highly chemoselective and enables easy prediction of the product enantioselectivity. Thus, unsaturated epoxy alcohols are readily obtained by selective oxidation of the allylic double bond in the presence of other carbon-carbon double or triple bonds. The wide availability of epoxy alcohols with unsaturated chains, the versatility of the epoxy alcohol functionality (e.g. regio- and stereo-selective ring opening; oxidation; and reduction), and the arsenal of established alkene chemistries, make unsaturated epoxy alcohols powerful starting materials for the synthesis of complex targets such as biologically active molecules. The popularization of ring-closing metathesis has further increased their value, making them excellent precursors to cyclic compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sphingomonas paucimobilis B90A contains two variants, LinA1 and LinA2, of a dehydrochlorinase that catalyzes the first and second steps in the metabolism of hexachlorocyclohexanes (R. Kumari, S. Subudhi, M. Suar, G. Dhingra, V. Raina, C. Dogra, S. Lal, J. R. van der Meer, C. Holliger, and R. Lal, Appl. Environ. Microbiol. 68:6021-6028, 2002). On the amino acid level, LinA1 and LinA2 were 88% identical to each other, and LinA2 was 100% identical to LinA of S. paucimobilis UT26. Incubation of chiral alpha-hexachlorocyclohexane (alpha-HCH) with Escherichia coli BL21 expressing functional LinA1 and LinA2 S-glutathione transferase fusion proteins showed that LinA1 preferentially converted the (+) enantiomer, whereas LinA2 preferred the (-) enantiomer. Concurrent formation and subsequent dissipation of beta-pentachlorocyclohexene enantiomers was also observed in these experiments, indicating that there was enantioselective formation and/or dissipation of these enantiomers. LinA1 preferentially formed (3S,4S,5R,6R)-1,3,4,5,6-pentachlorocyclohexene, and LinA2 preferentially formed (3R,4R,5S,6S)-1,3,4,5,6-pentachlorocyclohexene. Because enantioselectivity was not observed in incubations with whole cells of S. paucimobilis B90A, we concluded that LinA1 and LinA2 are equally active in this organism. The enantioselective transformation of chiral alpha-HCH by LinA1 and LinA2 provides the first evidence of the molecular basis for the changed enantiomer composition of alpha-HCH in many natural environments. Enantioselective degradation may be one of the key processes determining enantiomer composition, especially when strains that contain only one of the linA genes, such as S. paucimobilis UT26, prevail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thioridazine is a commonly prescribed phenothiazine drug administered as a racemate and it is believed that its antipsychotic effect is mainly associated with (R)-thioridazine. A method based on high-performance liquid chromatography has been developed for the determination of the enantiomers of thioridazine and thioridazine 2-sulfone (THD 2-SO2 or sulforidazine) and of the enantiomers of the diastereoisomeric pairs of thioridazine 2-sulfoxide (THD 2-SO or mesoridazine) and thioridazine 5-sulfoxide (THD 5-SO) in the plasma of thioridazine-treated patients. The method involves sequential achiral and chiral HPLC. The limits of quantitation for total (R) + (S) concentrations were found to be 15 ng/ml for thioridazine and 5 ng/ml for its metabolites. The limits for the determination of the (R)/(S) ratios were found to be 60 ng/ml for racemic THD and 10 ng/ml for racemic THD 2-SO, THD 2-SO2, THD 5-SO (FE) and THD 5-SO (SE). The method has been used to determine the concentrations of the enantiomers of thioridazine and of its metabolites in the plasma of a patient treated with 100 mg of racemic thioridazine hydrochloride per os per day for 14 days. The results show a high enantioselectivity in the metabolism of this drug: the (R)/(S) ratios for THD, THD 2-SO (FE), THD 2-SO (SE), THD 2-SO2, THD 5-SO (FE) and THD 5-SO (SE) were found to be 3.90, 1.22, 6.10, 4.10, 0.09 and 28.0, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AB Summary: Steady state concentrations of (S)- and (R)-mianserin and desmethylmianserin were measured in 21 homozygous extensive metabolizers (as determined by genotyping for mutations 3 [or A] and 4 [or B]), in seven heterozygous extensive metabolizers and in one poor metabolizer of debrisoquine, as well as in one patient receiving very high doses of mianserin (360 mg/day) and fluoxetine (160 mg/day), a strong cytochrome P450IID6 inhibitor. The mean dose of mianserin was (mean +/- SD, range: 67 +/- 63, 10 to 360 mg/day). High dispersions of the (S)/(R)-mianserin and desmethylmianserin ratios were observed (mean +/- SD, range: 2.10+/- 1.01, 0.64 to 4.76, and 0.29 +/- 0.14, 0.08 to 0.57, respectively). The highest (S)/(R)-mianserin ratio was calculated for the poor metabolizer (4.76) agreeing with those results of a single-dose study with poor and extensive metabolizers of debrisoquine, in that the cytochrome P450IID6 is probably involved in the metabolism of mianserin with an enantioselectivity for the (S)-enantiomer. Nevertheless, the mean concentration-to-dose ratios for (S)- or (R)-mianserin or desmethylmianserin were not significantly different between homozygous and heterozygous extensive metabolizers, and no particular values were measured in the poor metabolizer nor in the patient receiving fluoxetine. Furthermore, the(S)/(R)-mianserin ratio measured in the PM was only slightly higher than the second highest ratio (3.85) of an homozygous extensive metabolizer, whereas no particular value (2.92) was calculated for the patient taking fluoxetine. Finally, no significant differences in (S)/(R)-mianserin or(S)/(R)-desmethylmianserin were calculated between homozygous and heterozygous extensive metabolizers. Although the number of patients included in this study is too low to allow definite conclusions, the results suggest that the debrisoquine genotype has only a moderate influence on the steady state concentrations of the enantiomers of mianserin and desmethylmianserin. (C) Lippincott-Raven Publishers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipases have received great attention as industrial biocatalysts in areas like oils and fats processing, detergents, baking, cheese making, surface cleaning, or fine chemistry . They can catalyse reactions of insoluble substrates at the lipid-water interface, preserving their catalytic activity in organic solvents. This makes of lipases powerful tools for catalysing not only hydrolysis, but also various reverse reactions such as esterification, transesterification, aminolysis, or thiotransesterifications in anhydrous organic solvents. Moreover, lipases catalyse reactions with high specificity, regio and enantioselectivity, becoming the most used enzymes in synthetic organic chemistry. Therefore, they display important advantages over classical catalysts, as they can catalyse reactions with reduced side products, lowered waste treatment costs, and under mild temperature and pressure conditions. Accordingly, the use of lipases holds a great promise for green and economical process chemistry.