908 resultados para empirical models


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Epiphytic gastropods in Yangtze lakes have suffered from large-scale declines of submersed macrophytes during past decades. To better understand what controls gastropod community, monthly investigations were carried out in four Yangtze lakes during December, 2001-March, 2003. Composed of 23 species belonging to Pulmonata and Prosobranchia, the community is characterized by the constitution of small individuals. The average density and biomass were 417 +/- 160 ind/m(2) and 18.05 +/- 7.43 g/m(2), with maxima a-round August. Submersed macrophyte biomass is shown to be the key factor affecting species number, density, and biomass of gastropods. Accordingly, a series of annual and seasonal models yielding high predictive powers were generated. Preference analyses demonstrated that pulmonates and prosobranchs with different respiratory organs prefer different macrophyte functional groups.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The implications of polar cap expansions, contractions and movements for empirical models of high-latitude plasma convection are examined. Some of these models have been generated by directly averaging flow measurements from large numbers of satellite passes or radar scans; others have employed more complex means to combine data taken at different times into large-scale patterns of flow. In all cases, the models have implicitly adopted the assumption that the polar cap is in steady state: they have all characterized the ionospheric flow in terms of the prevailing conditions (e.g. the interplanetary magnetic field and/or some index of terrestrial magnetic activity) without allowance for their history. On long enough time scales, the polar cap is indeed in steady state but on time scales shorter than a few hours it is not and can oscillate in size and position. As a result, the method used to combine the data can influence the nature of the convection reversal boundary and the transpolar voltage in the derived model. This paper discusses a variety of effects due to time-dependence in relation to some ionospheric convection models which are widely applied. The effects are shown to be varied and to depend upon the procedure adopted to compile the model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While state-of-the-art models of Earth's climate system have improved tremendously over the last 20 years, nontrivial structural flaws still hinder their ability to forecast the decadal dynamics of the Earth system realistically. Contrasting the skill of these models not only with each other but also with empirical models can reveal the space and time scales on which simulation models exploit their physical basis effectively and quantify their ability to add information to operational forecasts. The skill of decadal probabilistic hindcasts for annual global-mean and regional-mean temperatures from the EU Ensemble-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) project is contrasted with several empirical models. Both the ENSEMBLES models and a “dynamic climatology” empirical model show probabilistic skill above that of a static climatology for global-mean temperature. The dynamic climatology model, however, often outperforms the ENSEMBLES models. The fact that empirical models display skill similar to that of today's state-of-the-art simulation models suggests that empirical forecasts can improve decadal forecasts for climate services, just as in weather, medium-range, and seasonal forecasting. It is suggested that the direct comparison of simulation models with empirical models becomes a regular component of large model forecast evaluations. Doing so would clarify the extent to which state-of-the-art simulation models provide information beyond that available from simpler empirical models and clarify current limitations in using simulation forecasting for decision support. Ultimately, the skill of simulation models based on physical principles is expected to surpass that of empirical models in a changing climate; their direct comparison provides information on progress toward that goal, which is not available in model–model intercomparisons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Free Core Nutation (FCN) is a free mode of the Earth's rotation caused by the different material characteristics of the Earth's core and mantle. This causes the rotational axes of those layers to slightly diverge from each other, resulting in a wobble of the Earth's rotation axis comparable to nutations. In this paper we focus on estimating empirical FCN models using the observed nutations derived from the VLBI sessions between 1993 and 2013. Assuming a fixed value for the oscillation period, the time-variable amplitudes and phases are estimated by means of multiple sliding window analyses. The effects of using different a priori Earth Rotation Parameters (ERP) in the derivation of models are also addressed. The optimal choice of the fundamental parameters of the model, namely the window width and step-size of its shift, is searched by performing a thorough experimental analysis using real data. The former analyses lead to the derivation of a model with a temporal resolution higher than the one used in the models currently available, with a sliding window reduced to 400 days and a day-by-day shift. It is shown that this new model increases the accuracy of the modeling of the observed Earth's rotation. Besides, empirical models determined from USNO Finals as a priori ERP present a slightly lower Weighted Root Mean Square (WRMS) of residuals than IERS 08 C04 along the whole period of VLBI observations, according to our computations. The model is also validated through comparisons with other recognized models. The level of agreement among them is satisfactory. Let us remark that our estimates give rise to the lowest residuals and seem to reproduce the FCN signal in more detail.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Functional-structural plant models that include detailed mechanistic representation of underlying physiological processes can be expensive to construct and the resulting models can also be extremely complicated. On the other hand, purely empirical models are not able to simulate plant adaptability and response to different conditions. In this paper, we present an intermediate approach to modelling plant function that can simulate plant response without requiring detailed knowledge of underlying physiology. Plant function is modelled using a 'canonical' modelling approach, which uses compartment models with flux functions of a standard mathematical form, while plant structure is modelled using L-systems. Two modelling examples are used to demonstrate that canonical modelling can be used in conjunction with L-systems to create functional-structural plant models where function is represented either in an accurate and descriptive way, or in a more mechanistic and explanatory way. We conclude that canonical modelling provides a useful, flexible and relatively simple approach to modelling plant function at an intermediate level of abstraction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water recovery is one of the key parameters in flotation modelling for the purposes of plant design and process control, as it determines the circulating flow and residence time in the individual process units in the plant and has a significant effect on entrainment and froth recovery. This paper reviews some of the water recovery models available in the literature, including both empirical and fundamental models. The selected models are tested using the data obtained from the experimental work conducted in an Outokumpu 3 m(3) tank cell at the Xstrata Mt Isa copper concentrator. It is found that all the models fit the experimental data reasonably well for a given flotation system. However, the empirical models are either unable to distinguish the effect of different cell operating conditions or required to determine the empirical model parameters to be derived in an existing flotation system. The model developed by [Neethling, SJ., Lee, H.T., Cilliers, J.J., 2003, Simple relationships for predicting the recovery of liquid from flowing foams and froths. Minerals Engineering 16, 1123-1130] is based on fundamental understanding of the froth structure and transfer of the water in the froth. It describes the water recovery as a function of the cell operating conditions and the froth properties which can all be determined on-line. Hence, the fundamental model can be used for process control purposes in practice. By incorporating additional models to relate the air recovery and surface bubble size directly to the cell operating conditions, the fundamental model can also be used for prediction purposes. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experiments were undertaken to study drying kinetics of moist cylindrical shaped food particulates during fluidised bed drying. Cylindrical particles were prepared from Green beans with three different length:diameter ratios, 3:1, 2:1 and 1:1. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experiments were undertaken to study drying kinetics of different shaped moist food particulates during heat pump assisted fluidised bed drying. Three particular geometrical shapes of parallelepiped, cylindrical and spheres were selected from potatoes (aspect ratio = 1:1, 2:1, 3:1), cut beans (length: diameter = 1:1, 2:1, 3:1) and peas respectively. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Due to complex hydrodynamics of the fluidised beds, drying kinetics are dryer or material specific. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the behaviour of very high strength (VHS) circular steel tubes strengthened by carbon fibre reinforced polymer (CFRP) and subjected to axial tension. A series of tests were conducted with different bond lengths and number of layers. The distribution of strain through the thickness of CFRP layers and along CFRP bond length was studied. The strain was found to generally decrease along the CFRP bond length far from the joint. The strain through the thickness of the CFRP layers was also found to decrease from bottom to top layer. The effective bond length for high modulus CFRP was established. Finally empirical models were developed to estimate the maximum load for a given CFRP arrangement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reliable approaches for predicting pollutant build-up are essential for accurate urban stormwater quality modelling. Based on the in-depth investigation of metal build-up on residential road surfaces, this paper presents empirical models for predicting metal loads on these surfaces. The study investigated metals commonly present in the urban environment. Analysis undertaken found that the build-up process for metals primarily originating from anthropogenic (copper and zinc) and geogenic (aluminium, calcium, iron and manganese) sources were different. Chromium and nickel were below detection limits. Lead was primarily associated with geogenic sources, but also exhibited a significant relationship with anthropogenic sources. The empirical prediction models developed were validated using an independent data set and found to have relative prediction errors of 12-50%, which is generally acceptable for complex systems such as urban road surfaces. Also, the predicted values were very close to the observed values and well within 95% prediction interval.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Osteocyte cells are the most abundant cells in human bone tissue. Due to their unique morphology and location, osteocyte cells are thought to act as regulators in the bone remodelling process, and are believed to play an important role in astronauts’ bone mass loss after long-term space missions. There is increasing evidence showing that an osteocyte’s functions are highly affected by its morphology. However, changes in an osteocyte’s morphology under an altered gravity environment are still not well documented. Several in vitro studies have been recently conducted to investigate the morphological response of osteocyte cells to the microgravity environment, where osteocyte cells were cultured on a two-dimensional flat surface for at least 24 hours before microgravity experiments. Morphology changes of osteocyte cells in microgravity were then studied by comparing the cell area to 1g control cells. However, osteocyte cells found in vivo are with a more 3D morphology, and both cell body and dendritic processes are found sensitive to mechanical loadings. A round shape osteocyte’s cells support a less stiff cytoskeleton and are more sensitive to mechanical stimulations compared with flat cellular morphology. Thus, the relative flat and spread shape of isolated osteocytes in 2D culture may greatly hamper their sensitivity to a mechanical stimulus, and the lack of knowledge on the osteocyte’s morphological characteristics in culture may lead to subjective and noncomprehensive conclusions of how altered gravity impacts on an osteocyte’s morphology. Through this work empirical models were developed to quantitatively predicate the changes of morphology in osteocyte cell lines (MLO-Y4) in culture, and the response of osteocyte cells, which are relatively round in shape, to hyper-gravity stimulation has also been investigated. The morphology changes of MLO-Y4 cells in culture were quantified by measuring cell area and three dimensionless shape features including aspect ratio, circularity and solidity by using widely accepted image analysis software (ImageJTM). MLO-Y4 cells were cultured at low density (5×103 per well) and the changes in morphology were recorded over 10 hours. Based on the data obtained from the imaging analysis, empirical models were developed using the non-linear regression method. The developed empirical models accurately predict the morphology of MLO-Y4 cells for different culture times and can, therefore, be used as a reference model for analysing MLO-Y4 cell morphology changes within various biological/mechanical studies, as necessary. The morphological response of MLO-Y4 cells with a relatively round morphology to hyper-gravity environment has been investigated using a centrifuge. After 2 hours culture, MLO-Y4 cells were exposed to 20g for 30mins. Changes in the morphology of MLO-Y4 cells are quantitatively analysed by measuring the average value of cell area and dimensionless shape factors such as aspect ratio, solidity and circularity. In this study, no significant morphology changes were detected in MLO-Y4 cells under a hyper-gravity environment (20g for 30 mins) compared with 1g control cells.