38 resultados para emittance


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To meet the requirements of providing high-intensity heavy ion beams the direct plasma injection scheme (DPIS) was proposed by a RIKEN-CNS-TIT collaboration. In this scheme a radio frequency quadrupole (RFQ) was joined directly with the laser ion source (LIS) without a low-energy beam transport (LEBT) line. To find the best design of the RFQ that will have short length, high transmission efficiency and small emittance growth, beam dynamics designs with equipartitioning design strategy and with matched-only design strategy have been performed, and a comparison of their results has also been done. Impacts of the input beam parameters on transmission efficiency are presented, too. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small-angle multiple intrabeam scattering (IBS) is an important effect for heavy-ion storage rings with electron cooling, because the cooling time is determined by the equilibrium between cooling and IBS process. All usually used numerical algorithms of IBS growth rate calculations are based on the model of the collisions proposed by A.Piwinski, but this result is a multidimensional integral. In this paper, the IBS growth rates are simulated for HIRFL-CSR using symmetric elliptic integral method, and compared with several available IBS code results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Superconducting ECR ion source with Advanced design in Lanzhou (SECRAL) was successfully built to produce intense beams of highly charged ions for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis 3.6T at injection, 2.2T at extraction and a radial sextupole field of 2.0T at plasma chamber wall. A unique feature of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. During the ongoing commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.2kW and it turned out the performance is very promising. Some record ion beam intensities have been produced, for instance, 810e mu A of O7+, 505e mu A of Xe20+, 306e mu A of Xe27+, 21e mu A of Xe34+, 2.4e mu A of Xe38+ and so on. To reach better results for highly charged ion beams, further modifications such as an aluminium chamber with better cooling, higher microwave power and a movable extraction system will be done, and also emittance measurements are being prepared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principle of particle coupling between horizontal and vertical directions in solenoid is presented. Further more, the method of decoupling can be obtained by using the coupling dynamic equations. 5000 particles are tracked under three conditions: CSRm doesn't contain solenoids, contains main solenoid and toroids, contains compensating solenoids. The results of the particle trace calculations show that the particles coupling between horizontal and vertical is very serious because of the existence of solenoids, and lot's of particals are lost. Another two solenoids which locate in the fit place can be used to decrease the coupling intensation. The method is proved to be useful by the trace calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to match the beam from the injection machine SFC of the HIRFL to the main ring of HIRFL-CSR, both beam emittance confining method and beam energy spread reducing method are proposed. The beam preparation principles and calculation results are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new SSC (Separated Sector Cyclotron)-Linac is being designed to serve as an injector for the SSC at the HIRFL (Heavy Ion Research Facility Lanzhou). The beam intensity at the LEBT (Low Energy Beam Transport) for the heavy ions after the selection is typically low and the space charge effects are inconspicuous. The space charge effects become obvious when the beam current increases to a few hundred microamperes. The emittance growth deriving from the space charge effects may be particularly troublesome for the following linac and cyclotron. An optical system containing three solenoids has been designed for the LEBT to limit the beam emittance and to avoid the unnecessary beam loss in the cyclotron, as well as for the purpose of immunizing the LEBT emittance growth due to the space charge effects. The results of the PIG (Particle-In-Cell) mode simulation illustrate that this channel could limit the beam emittance growth and increase the beam brightness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e mu A of Xe-129(43+), 22 e mu A of Bi-209(41+), and 1.5 e mu A of Bi-209(50+). To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e mu A of Xe-129(27+) and 152 e mu A of Xe-129(30+), although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and Xe-129(27+), Kr-78(19+), Bi-209(31+), and Ni-58(19+) beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production. Finally the future development of SECRAL will be presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

束流发射度测量应用软件是在加速器控制和束流诊断的基础上,为方便加速器调束而设计的集测量、计算、绘图等功能为一体的计算机应用程序。本论文全面论述了在HIRFL束流诊断系统中,利用二次发射束流剖面测量装置和以图像采集处理为基础的多孔屏法测量装置进行束流发射度测量应用软件设计的开发过程。采用面向对象(OOP)的计算机编程技术,结合加速器物理知识、束流诊断技术、调束经验、数据图形化软件设计等多项技术,用VistlalC++6.O编译器完成应用软件的设计,并运行于Windows 9X/2000操作系统平台中。论文中阐述了目前国际上加速器以及HIRFL束流诊断技术的发展现状和本论文的研究工作及其意义;简要概述了几种束流横向参数的测量方法;对三剖面法束流发射度测量系统,包括束流剖面测量的工作原理,信号的传输与预处理,动态链接库的开发和发射度测量原理等作了比较详细地介绍,同时介绍了应用软件中各个功能模块的设计过程。在该系统设计中,本着方便运行人员操作的原则,将束流发射度测量结果形象、直观的显示在操作界面上,并一改以往测量与调节过程相分离的状态,将二者集于一体,使得测量和调节能够同步进行。在多孔屏法发射度测量系统设计中,介绍了系统的总体测量结构,并对用作图像获取的DT3 155接口卡的性能和工作原理作了详细地介绍,对荧光靶图像的处理方法作了较为深入的研究,同时系统的阐述了该系统应用软件的主要设计思想和各功能模块的实现过程。在这套系统中采用了图像变换、边界跟踪等数字图像处理技术,大大减少了数据处理量,提高了图像的处理速度,使得传统的荧光靶定性观测得以发展成实时、精确的定量测量。最后,根据计算机技术,网络信息技术及束流诊断技术的发展趋势,对发射度测量应用软件未来的改进设计作了进一步的设想。这两套应用软件均已在源束线进行了安装和测试,达到了预期的目的,并取得了较为满意的结果,具有实时、快速、精度高、界面直观友好等优点。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

成功研制一套适合于ECR离子源引出束流发射度测量的探测器ESS(Electric-SweeP Scanner)。该探测器主要由测量探头、机械驱动装置、计算机控制及数据获取系统组成。ESS探测器所采用的测量方法是双狭缝加电扫描法,具有速度快、精度高,能够比较直观的反映束流的发射度相图、相空间密度分布等特点,是目前ECR离子源引出束流发射度测量的有效手段。本论文对发射度探测器ESS的原理、结构及物理和技术设计作了较详细的描述,并给出了相应的设计图纸及数值模拟结果。最后,利用Ess探测器对LECR3(Lanzhou No.3)离子源引出的04+离子束的发射度作了初步测量。当04+引出束流为343μA日寸,初步测量所得水平方向的发射度为227mm·mrad(约90%束流),并给出了相应的束流发射度相图和束流相空间密度分布。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIRFL is a tandem cyclotron complex for heavy ion. On the beam line between SFC and SSC, there is a stripper. Behind it, the distribution of charge states of beam is a Gauss distribution. The equilibrium charge state Q_0 is selected by 1BO2(a 50° dipole behind the stripper) and delivered to SSC. One of two new small beam line (named SLAS) after 1B02 will be builded in or der to split and deliver the unused ions of charge states (Q_0 ± n) to aspecific experimental area. Q_0 ± n ions are septumed and separated from initial(Q_0) ion beam by two septum magnets SM1, SM2. The charge state selected by SM1 will be Q_0 ± 1(6 ≤ Q_0 < 17), Q_0 ± 2(17 ≤ Q_0 < 33) and Q_0 ± 3 (Q_0 ≥ 33) forming a beam in one of the two possine new beam line with the stripping energy of (0.2 to 9.83 Mev/A), an emittance of 10π mm.mrad in the two transverse planes and an intensity ranging from 10~(11) pps for z ≤ 10 to some 10~5 pps for the heaviest element. Behind SM2, a few transport elements (three dipoles and seven qudrupoles) tra nsport Q_0 ± n beam to target positions T1, T2 (see fig. 1) and generate small beam spots (φ ≤ 4mm, φ ≤ 6mm). The optics design of the beam line has been done based on SLAC-75 (a first and second - order matrix theory). beam optics calculation has been worked out with the TRANSPORT program. The design is a very economical thinking, because without building a new accelerator we can obtain a lower energy heavy ion beam to provide for a lot of atomic and solid state physical experiments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article reports on an experimental method to fully reconstruct laser-accelerated proton beam parameters called radiochromic film imaging spectroscopy (RIS). RIS allows for the characterization of proton beams concerning real and virtual source size, envelope- and microdivergence, normalized transverse emittance, phase space, and proton spectrum. This technique requires particular targets and a high resolution proton detector. Therefore thin gold foils with a microgrooved rear side were manufactured and characterized. Calibrated GafChromic radiochromic film (RCF) types MD-55, HS, and HD-810 in stack configuration were used as spatial and energy resolved film detectors. The principle of the RCF imaging spectroscopy was demonstrated at four different laser systems. This can be a method to characterize a laser system with respect to its proton-acceleration capability. In addition, an algorithm to calculate the spatial and energy resolved proton distribution has been developed and tested to get a better idea of laser-accelerated proton beams and their energy deposition with respect to further applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the applicative potential and in the perspective to investigate novel regimes as available laser intensities will be increasing. Experiments have demonstrated, over a wide range of laser and target parameters, the generation of multi-MeV proton and ion beams with unique properties such as ultrashort duration, high brilliance, and low emittance. An overview is given of the state of the art of ion acceleration by laser pulses as well as an outlook on its future development and perspectives. The main features observed in the experiments, the observed scaling with laser and plasma parameters, and the main models used both to interpret experimental data and to suggest new research directions are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeVm^-1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cool materials are characterized by high solar reflectance and high thermal emittance; when applied to the external surface of a roof, they make it possible to limit the amount of solar irradiance absorbed by the roof, and to increase the rate of heat flux emitted by irradiation to the environment, especially during nighttime. However, a roof also releases heat by convection on its external surface; this mechanism is not negligible, and an incorrect evaluation of its entity might introduce significant inaccuracy in the assessment of the thermal performance of a cool roof, in terms of surface temperature and rate of heat flux transferred to the indoors. This issue is particularly relevant in numerical simulations, which are essential in the design stage, therefore it deserves adequate attention. In the present paper, a review of the most common algorithms used for the calculation of the convective heat transfer coefficient due to wind on horizontal building surfaces is presented. Then, with reference to a case study in Italy, the simulated results are compared to the outcomes of a measurement campaign. Hence, the most appropriate algorithms for the convective coefficient are identified, and the errors deriving by an incorrect selection of this coefficient are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have shown that the optical properties of building exterior surfaces are important in terms of energy use and thermal comfort. While the majority of the studies are related to exterior surfaces, the radiation properties of interior surfaces are less thoroughly investigated. Development in the coil-coating industries has now made it possible to allocate different optical properties for both exterior and interior surfaces of steel-clad buildings. The aim of this thesis is to investigate the influence of surface radiation properties with the focus on the thermal emittance of the interior surfaces, the modeling approaches and their consequences in the context of the building energy performance and indoor thermal environment. The study consists of both numerical and experimental investigations. The experimental investigations include parallel field measurements on three similar test cabins with different interior and exterior surface radiation properties in Borlänge, Sweden, and two ice rink arenas with normal and low emissive ceiling in Luleå, Sweden. The numerical methods include comparative simulations by the use of dynamic heat flux models, Building Energy Simulation (BES), Computational Fluid Dynamics (CFD) and a coupled model for BES and CFD. Several parametric studies and thermal performance analyses were carried out in combination with the different numerical methods. The parallel field measurements on the test cabins include the air, surface and radiation temperatures and energy use during passive and active (heating and cooling) measurements. Both measurement and comparative simulation results indicate an improvement in the indoor thermal environment when the interior surfaces have low emittance. In the ice rink arenas, surface and radiation temperature measurements indicate a considerable reduction in the ceiling-to-ice radiation by the use of low emittance surfaces, in agreement with a ceiling-toice radiation model using schematic dynamic heat flux calculations. The measurements in the test cabins indicate that the use of low emittance surfaces can increase the vertical indoor air temperature gradients depending on the time of day and outdoor conditions. This is in agreement with the transient CFD simulations having the boundary condition assigned on the exterior surfaces. The sensitivity analyses have been performed under different outdoor conditions and surface thermal radiation properties. The spatially resolved simulations indicate an increase in the air and surface temperature gradients by the use of low emittance coatings. This can allow for lower air temperature at the occupied zone during the summer. The combined effect of interior and exterior reflective coatings in terms of energy use has been investigated by the use of building energy simulation for different climates and internal heat loads. The results indicate possible energy savings by the smart choice of optical properties on interior and exterior surfaces of the building. Overall, it is concluded that the interior reflective coatings can contribute to building energy savings and improvement of the indoor thermal environment. This can be numerically investigated by the choice of appropriate models with respect to the level of detail and computational load. This thesis includes comparative simulations at different levels of detail.