994 resultados para emission trading
Resumo:
In late 2008, the Government of the Republic of Ireland set a specific target that 10% of all vehicles in its transport fleet be powered by electricity by 2020 in order to meet European Union renewable energy targets and greenhouse gas emissions reduction targets. International there are similar targets. This is a considerable challenge as in 2009, transport accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the impacts of 10% electric vehicle charging on the single wholesale electricity market for the Republic of Ireland and Northern Ireland is examined. The energy consumed and the total carbon dioxide emissions generated under different charging scenarios is quantified and the results of the charging scenarios are compared to identify the best implementation strategy.
Resumo:
To meet European Union renewable energy and greenhouse gas emissions reduction targets the Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. However, reducing energy consumption and decreasing greenhouse gas emissions in transport is a considerable challenge due to heavy reliance on fossil fuels. In fact, transport in the Republic of Ireland in 2009 accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the effect of electric vehicle charging on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is analysed. The energy consumed, greenhouse gas emissions generated and changes to the wholesale price of electricity under peak and off-peak charging scenarios are quantified and discussed. Results from the study show that off-peak charging is more beneficial than peak charging.
Resumo:
This paper addresses the impact of the CO2 opportunity cost on the wholesale electricity price in the context of the Iberian electricity market (MIBEL), namely on the Portuguese system, for the period corresponding to the Phase II of the European Union Emission Trading Scheme (EU ETS). In the econometric analysis a vector error correction model (VECM) is specified to estimate both long–run equilibrium relations and short–run interactions between the electricity price and the fuel (natural gas and coal) and carbon prices. The model is estimated using daily spot market prices and the four commodities prices are jointly modelled as endogenous variables. Moreover, a set of exogenous variables is incorporated in order to account for the electricity demand conditions (temperature) and the electricity generation mix (quantity of electricity traded according the technology used). The outcomes for the Portuguese electricity system suggest that the dynamic pass–through of carbon prices into electricity prices is strongly significant and a long–run elasticity was estimated (equilibrium relation) that is aligned with studies that have been conducted for other markets.
Resumo:
The transport sector emits a wide variety of gases and aerosols, with distinctly different characteristics which influence climate directly and indirectly via chemical and physical processes. Tools that allow these emissions to be placed on some kind of common scale in terms of their impact on climate have a number of possible uses such as: in agreements and emission trading schemes; when considering potential trade-offs between changes in emissions resulting from technological or operational developments; and/or for comparing the impact of different environmental impacts of transport activities. Many of the non-CO2 emissions from the transport sector are short-lived substances, not currently covered by the Kyoto Protocol. There are formidable difficulties in developing metrics and these are particularly acute for such short-lived species. One difficulty concerns the choice of an appropriate structure for the metric (which may depend on, for example, the design of any climate policy it is intended to serve) and the associated value judgements on the appropriate time periods to consider; these choices affect the perception of the relative importance of short- and long-lived species. A second difficulty is the quantification of input parameters (due to underlying uncertainty in atmospheric processes). In addition, for some transport-related emissions, the values of metrics (unlike the gases included in the Kyoto Protocol) depend on where and when the emissions are introduced into the atmosphere – both the regional distribution and, for aircraft, the distribution as a function of altitude, are important. In this assessment of such metrics, we present Global Warming Potentials (GWPs) as these have traditionally been used in the implementation of climate policy. We also present Global Temperature Change Potentials (GTPs) as an alternative metric, as this, or a similar metric may be more appropriate for use in some circumstances. We use radiative forcings and lifetimes from the literature to derive GWPs and GTPs for the main transport-related emissions, and discuss the uncertainties in these estimates. We find large variations in metric (GWP and GTP) values for NOx, mainly due to the dependence on location of emissions but also because of inter-model differences and differences in experimental design. For aerosols we give only global-mean values due to an inconsistent picture amongst available studies regarding regional dependence. The uncertainty in the presented metric values reflects the current state of understanding; the ranking of the various components with respect to our confidence in the given metric values is also given. While the focus is mostly on metrics for comparing the climate impact of emissions, many of the issues are equally relevant for stratospheric ozone depletion metrics, which are also discussed.
Resumo:
Global warming has attracted attention from all over the world and led to the concern about carbon emission. Kyoto Protocol, as the first major international regulatory emission trading scheme, was introduced in 1997 and outlined the strategies for reducing carbon emission (Ratnatunga et al., 2011). As the increased interest in carbon reduction the Protocol came into force in 2005, currently there are already 191 nations ratifying the Protocol(UNFCCC, 2012). Under the cap-and-trade schemes, each company has its carbon emission target. When company’s carbon emission exceeds the target the company will either face fines or buy emission allowance from other companies. Thus unlike most of the other social and environmental issues carbon emission could trigger cost for companies in introducing low-emission equipment and systems and also emission allowance cost when they emit more than their targets. Despite the importance of carbon emission to companies, carbon emission reporting is still operating under unregulated environment and companies are only required to disclose when it is material either in value or in substances (Miller, 2005, Deegan and Rankin, 1997). Even though there is still an increase in the volume of carbon emission disclosures in company’s financial reports and stand-alone social and environmental reports to show their concern of the environment and also their social responsibility (Peters and Romi, 2009), the motivations behind corporate carbon emission disclosures and whether carbon disclosures have impact on corporate environmental reputation and financial performance have not yet to explore. The problems with carbon emission lie on both the financial side and non-financial side of corporate governance. On one hand corporate needs to spend money in reducing carbon emission or paying penalties when they emit more than allowed. On the other hand as the public are more interested in environmental issues than before carbon emission could also impact on the image of corporate regarding to its environmental performance. The importance of carbon emission issue are beginning to be recognized by companies from different industries as one of the critical issues in supply chain management (Lee, 2011) and 80% of companies analysed are facing carbon risks resulting from emissions in the companies’ supply chain as shown in a study conducted by the Investor Responsibility Research Centre Institute for Corporate Responsibility (IRRCI) and over 80% of the companies analysed found that the majority of greenhouse gas (GHG) emission are from electricity and other direct suppliers (Trucost, 2009). The review of extant literature shows the increased importance of carbon emission issues and the gap in the study of carbon reporting and disclosures and also the study which links corporate environmental reputation and corporate financial performance with carbon reporting (Lohmann, 2009a, Ratnatunga and Balachandran, 2009, Bebbington and Larrinaga-Gonzalez, 2008). This study would focus on investigating the current status of UK carbon emission disclosures, the determinant factors of corporate carbon disclosure, and the relationship between carbon emission disclosures and corporate environmental reputation and financial performance of UK listed companies from 2004-2012 and explore the explanatory power of classical disclosure theories.
Resumo:
This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.
Resumo:
In questa tesi viene esposto il modello EU ETS (European Union Emission Trading Scheme) per la riduzione delle emissoni di gas serra, il quale viene formalizzato matematicamente da un sistema di FBSDE (Forward Backward Stochastic Differential Equation). Da questo sistema si ricava un'equazione differenziale non lineare con condizione al tempo finale non continua che viene studiata attraverso la teoria delle soluzioni viscosità. Inoltre il modello viene implementato numericamente per ottenere alcune simulazioni dei processi coinvolti.
Resumo:
The needs for effectively controlling carbon dioxide emissions and properly allocating carbon dioxide emission permits or allowances in China have never been so great. In this paper, a systematic multi-agent-based framework for the modelling and analysis of the allocation of carbon dioxide emission quotas in China is proposed. A carbon trading market model as the core of the activities of allocation management is constructed and discussed. In addition, examples of the modelling and simulation work are presented.
Resumo:
This article discusses the Carbon Credit Trading Market in Brazil and opportunities for technological development and innovation related. The international trade in carbon credits becomes a source of opportunities for developing countries because of the Clean Development Mechanism. Committed to reduce polluting levels from 2008 to 2012, and ahead, industrialized countries started to seek ecological solutions internally or compensatory actions such as buying carbon credits from low-emission countries. This strategy brought up a brand-new industrial sector that still requires productive structures and a solid international commercialization system. This is a qualitative study, based on documentary research, referring to the Brazilian territory. The data obtained point out a set of efforts such as researching and developing products and processes environment friendly. Other findings indicate opportunities to expand Green Economy Sector through supporting a set of newborn firms such as waste management and recycling, in addition to other actions that reinforce sustainable development opportunities to the country and, at the end, to the world.
Resumo:
Grandfathering is currently the main principle for the initial allocation of tradable CO2 emission rights under the European cap-and-trade scheme. Furthermore, political feasibility often requires non-restrictive emission caps. Grandfathering under lax cap is unjust, biased and brings polluters unintended windfall profits. Still, in any post-Kyoto international CO2 regime, lax caps may be critical in coaxing binding emission targets out of more countries, especially those in the less-developed world. This paper argues that there is a certain quantity of emission rights between the initial and the optimal emissions, the grandfathering of which brings polluters zero windfall profits or zero windfall losses. Our theoretical concept of zero-windfall grandfathering can be used to demonstrate the windfall profits that have emerged at company level during the first EU trading period. It might thus encourage governments to embrace auctioning, and to combine it with grandfathering as a legitimate tool in the initial allocation of emission rights in later trading regimes.
Resumo:
A cikk bemutatja, hogy az emissziós jogok mérleg- és beszámoló-képességi kritériumai milyen leképezést tesznek lehetővé a jelenleg érvényes Nemzetközi Pénzügyi Beszámolási Standardokban (IFRS, International Financial Reporting Standards). A vizsgálat fókuszában az üzemeltető áll, aki az Európai Unió kibocsátás-kereskedelmi rendszerének hatálya alá tartozik, azaz ipari tevékenysége folytán szén-dioxiddal szennyezi a Föld légterét. Az üzemeltető mint az emissziós jog tulajdonosa jelenik meg. A cikk megvizsgálja mindazokat a folyamatokat, melynek eredményeképpen birtokolhatja ezeket az egységeket, valamint azt, hogy az IFRS-ek milyen lehetőséget nyújtanak a különböző forrásból származó jogosultságok értékelésére. / === / The author presents that accounting and report ability criteria of the emission rights what mapping allows in the current International Financial Standards. The study focuses on the operator, who is the subject of the European Union Emissions Trading Scheme, whose industrial activities pollute with carbon dioxide to the earth’s atmosphere. The operator, as the owner of emission rights is displayed. This article examines those processes, which resulted in these units may be owned, and that what possibility is provided by IFRSs to evaluate rights from different sources.
Resumo:
In recent years there has been growing concern about the emission trade balances of countries. This is due to the fact that countries with an open economy are active players in international trade. Trade is not only a major factor in forging a country’s economic structure, but contributes to the movement of embodied emissions beyond country borders. This issue is especially relevant from the carbon accounting policy and domestic production perspective, as it is known that the production-based principle is employed in the Kyoto agreement. The research described herein was designed to reveal the interdependence of countries on international trade and the corresponding embodied emissions both on national and on sectoral level and to illustrate the significance of the consumption-based emission accounting. It is presented here to what extent a consumption-based accounting would change the present system based on production-based accounting and allocation. The relationship of CO2 emission embodied in exports and embodied in imports is analysed here. International trade can blur the responsibility for the ecological effects of production and consumption and it can lengthen the link between consumption and its consequences. Input-output models are used in the methodology as they provide an appropriate framework for climate change accounting. The analysis comprises an international comparative study of four European countries (Germany, the United Kingdom, the Netherlands, and Hungary) with extended trading activities and carbon emissions. Moving from a production-based approach in climate policy to a consumption-based principle and allocation approach would help to increase the efficiency of emission reductions and would force countries to rethink their trading activities in order to decrease the environmental load of production activities. The results of this study show that it is important to distinguish between the two emission accounting approaches, both on the global and the local level.
Resumo:
With growing demand for liquefied natural gas (LNG) and liquid transportation fuels, and concerns about climate change and causes of greenhouse gas emissions, this master’s thesis introduces a new value chain design for LNG and transportation fuels and respective fundamental business cases based on hybrid PV-Wind power plants. The value chains are composed of renewable electricity (RE) converted by power-to-gas (PtG), gas-to-liquids (GtL) or power-to-liquids (PtL) facilities into SNG (which is finally liquefied into LNG) or synthetic liquid fuels, mainly diesel, respectively. The RE-LNG or RE-diesel are drop-in fuels to the current energy system and can be traded everywhere in the world. The calculations for the hybrid PV-Wind power plants, electrolysis, methanation (H2tSNG), hydrogen-to-liquids (H2tL), GtL and LNG value chain are performed based on both annual full load hours (FLh) and hourly analysis. Results show that the proposed RE-LNG produced in Patagonia, as the study case, is competitive with conventional LNG in Japan for crude oil prices within a minimum price range of about 87 - 145 USD/barrel (20 – 26 USD/MBtu of LNG production cost) and the proposed RE-diesel is competitive with conventional diesel in the European Union (EU) for crude oil prices within a minimum price range of about 79 - 135 USD/barrel (0.44 – 0.75 €/l of diesel production cost), depending on the chosen specific value chain and assumptions for cost of capital, available oxygen sales and CO2 emission costs. RE-LNG or RE-diesel could become competitive with conventional fuels from an economic perspective, while removing environmental concerns. The RE-PtX value chain needs to be located at the best complementing solar and wind sites in the world combined with a de-risking strategy. This could be an opportunity for many countries to satisfy their fuel demand locally. It is also a specific business case for countries with excellent solar and wind resources to export carbon-neutral hydrocarbons, when the decrease in production cost is considerably more than the shipping cost. This is a unique opportunity to export carbon-neutral hydrocarbons around the world where the environmental limitations on conventional hydrocarbons are getting tighter.