979 resultados para emission properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field emission properties of single-walled carbon nanotubes (SWCNTs), which were prepared through alcohol catalytic chemical vapor deposition for 10-60s, were characterized in a diode configuration. Protrusive bundles at the top surface of samples act selectively as emission sites. The number of emission sites was controlled by emitter morphologies combined with texturing of Si substrates. SWCNTs grown on a textured Si substrate exhibited a turn-on field as low as 2.4 V/μm at a field emission current density of 1 μA/cm 2. Uniform spatial luminescence (0.5 cm2) from the rear surface of the anode was revealed for SWCNTs prepared on the textured Si substrate. Deterioration of field emission properties through repetitive measurements was reduced for the textured samples in comparison with vertically aligned SWCNTs and a random network of SWCNTs prepared on flat Si substrates. Emitter morphology resulting in improved field emission properties is a crucial factor for the fabrication of SWCNT-electron sources. Morphologically controlled SWCNTs with promising emitter performance are expected to be practical electron sources. © 2008 The Japan Society of Applied Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) and scanning electron microscopy (SEM) with cathodoluminescence (CL) were performed on exactly the same defects in a blue-emitting InGaN/GaN multiple quantum well (QW) sample enabling the direct correlation of the morphology of an individual defect with its emission properties. The defects in question are observed in AFM and SEM as a trench partially or fully enclosing a region of the QW having altered emission properties. Their sub-surface structure has previously been shown to consist of a basal plane stacking fault (BSF) in the plane of the QW stack, and a stacking mismatch boundary (SMB) which opens up into a trench at the sample surface. In CL, the material enclosed by the trench may emit more or less intensely than the surrounding material, but always exhibits a redshift relative to the surrounding material. A strong correlation exists between the width of the trench and both the redshift and the intensity ratio, with the widest trenches surrounding regions which exhibit the brightest and most redshifted emission. Based on studies of the evolution of the trench width with the number of QWs from four additional MQW samples, we conclude that in order for a trench defect to emit intense, strongly redshifted light, the BSF must be formed in the early stages of the growth of the QW stack. The data suggest that the SMB may act as a non-radiative recombination center. © 2013 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field emissions (FE) from La-doped zinc oxide (ZnO) films are both experimentally and theoretically investigated. Owing to the La-doped effect, the FE characteristic of ZnO films is remarkably enhanced compared with an undoped sample, and a startling low turn-on electric field of about 0.4 V/mu m (about 2.5 V/mu m for the undoped ZnO films) is obtained at an emission current density of 1 mu A/cm(2) and the stable current density reaches 1 mA/cm(2) at an applied field of about 2.1 V/mu m. A self-consistent theoretical analysis shows that the novel FE enhancement of the La-doped sample may be originated from its smaller work function. Due to the effect of doping with La, the Fermi energy level lifts, electrons which tunnelling from surface barrier are consumedly enhancing, and then leads to a huge change of field emission current. Interestingly, it suggests a new effective method to improve the FE properties of film materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wurtzite stalactite-like quasi-one-dimensional ZnS nanoarrays with ZnO protuberances were synthesized through a thermal evaporation route. The structure and morphology of the samples are studied and the growth mechanism is discussed. X-ray diffraction (XRD) results show both the ZnS stem and the ZnO protuberances have wurtzite structure and show preferred [001] oriented growth. The photoluminescence and field emission properties have also been investigated. Room temperature photoluminescence result shows it has a strong green light emission, which has potential application for green light emitter. Experimental results also show that the stalactite arrays have a good field emission property, with turn-on field of 11.4 V/mu m, and threshold field of 16 V/mu m. The ZnO protuberances on the ZnS stem might enhance the field emission notably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si-doped nonpolar a-plane GaN films were grown on nanopatterned sapphire substrates by a low-pressure metal organic chemical vapor deposition (MOCVD) system. The structure, morphology and field emission properties of the sample were studied by means of high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), and field emission measurement. The XRD analysis shows that the sample is a nonpolar a-plane (11 (2) over bar0) GaN film. The field emission measurement shows that the nonpolar GaN films exhibit excellent field emission properties with a threshold emission field of as low as 10 V/mu m at a current density of 0.63 mu A/cm(2), and a high field emission current density of 74 mA/cm(2) at an applied field of 24 V/mu m. Moreover, the Fowler-Nordheirn plot of the sample fits a near linear relation. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembled growth of vertically well-aligned ZnO nanorod arrays with uniform length and diameter on Si substrate has been demonstrated via thermal evaporation and vapor-phase transport. The structural, photoluminescence (PL), and field emission properties of the as-prepared nanorod arrays were investigated. The PL spectrum at 10 K shows a strong and sharp near-band gap emission (NBE) peak ( full width at half-maximum (FWHM) = 4.7 meV) and a weak neglectable deep-level emission (DL) peak (I-NBE/I-DL= 220), which implies its good crystallinity and high optical quality. The room-temperature NBE peak was deduced to the composition of free exciton and its first-order replicas emissions by temperature-dependent PL spectra. The field emission measurements indicate that, with a vacuum gap of 400 Am, the turn-on field and threshold field is as low as 2.3 and 4.2 V/mu m. The field enhancement factor beta and vacuum gap d follows a universal equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors report the effects of rapid thermal annealing (RTA) on the emission properties of highly uniform self-assembled InAs quantum dots (QDs) emitting at 1.3 mu m grown on GaAs substrate by metal organic chemical vapor deposition. Postgrowth RTA experiments were performed under N-2 flow at temperatures ranging from 600 to 900 degrees C for 30 s using GaAs proximity capping. Surprisingly, in spite of the capping, large blueshifts in the emission peak (up to about 380 meV at 850 degrees C) were observed (even at low annealing temperatures) along with enhanced integrated photoluminescence (PL) intensities. Moreover, pronounced peak broadenings occurred at low annealing temperatures (< 700 degrees C), indicating that RTA does not always cause peak narrowing, as is typically observed with traditional QDs with large inhomogeneous PL linewidths. The mechanism behind the large peak blueshift was studied and found to be attributed to the as-grown QDs with large size, which cause a larger dot-barrier interface and greater strain in and near the QD regions, thereby greatly promoting Ga-In intermixing across the interface during RTA. The results reported here demonstrate that it is possible to significantly shift the emission peak of the QDs by RTA without any additional procedures, even at lower annealing temperatures. (c) 2007 American Institute of Physics.