978 resultados para electrosynthesis hydrotalcite pH-sensor structured catalystcatalytic partial oxidation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalysts containing mixtures of NiO, MgO and ZrO2 were synthesized by the polymerization method. They were characterized by X-ray diffraction (XRD), physisorption of N-2 (BET), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES), and then tested in the partial oxidation of methane (POM) in the presence of air (2CH(4):1O(2)) at 750 degrees C for 6 h. Among the ternary oxides, the catalyst with 40 mol% MgO showed the highest conversion rates in the catalytic processes, but also the highest carbon deposition values (48 mmol h (1)). The greater the amount of NiO-MgO solid solution formed, the higher was the conversion rate of reactants (CH4), peaking at 40 mol% of MgO. Catalysts with lower Ni content on the surface achieved a high rate of CH4 conversion into synthesis gas (H-2 + CO). The formation of more NiO-MgO solid solution seemed to inhibit the deactivation of Ni degrees during reaction. The values of the H-2/CO product ratio were generally found to be slightly lower than stoichiometric. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RKKEE cluster of charged residues located within the cytoplasmic helix of the bacterial mechanosensitive channel, MscL, is essential for the channel function. The structure of MscL determined by x-ray crystallography and electron paramagnetic resonance spectroscopy has revealed discrepancies toward the C-terminus suggesting that the structure of the C-terminal helical bundle differs depending on the pH of the cytoplasm. In this study we examined the effect of pH as well as charge reversal and residue substitution within the RKKEE cluster on the mechanosensitivity of Escherichia coli MscL reconstituted into liposomes using the patch-clamp technique. Protonation of either positively or negatively charged residues within the cluster, achieved by changing the experimental pH or residue substitution within the RKKEE cluster, significantly increased the free energy of activation for the MscL channel due to an increase in activation pressure. Our data suggest that the orientation of the C-terminal helices relative to the aqueous medium is pH dependent, indicating that the RKKEE cluster functions as a proton sensor by adjusting the channel sensitivity to membrane tension in a pH-dependent fashion. A possible implication of our results for the physiology of bacterial cells is briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innovation in several industrial sectors has been recently characterized by the need for reducing the operative temperature either for economic or environmental related aspects. Promising technological solutions require the acquisition of fundamental-based knowledge to produce safe and robust systems. In this sense, reactive systems often represent the bottleneck. For these reasons, this work was focused on the integration of chemical (i.e., detailed kinetic mechanism) and physical (i.e., computational fluid dynamics) models. A theoretical-based kinetic mechanism mimicking the behaviour of oxygenated fuels and their intermediates under oxidative conditions in a wide range of temperature and pressure was developed. Its validity was tested against experimental data collected in this work by using the heat flux burner, as well as measurements retrieved from the current literature. Besides, estimations deriving from existing models considered as the benchmark in the combustion field were compared with the newly generated mechanism. The latter was found to be the most accurate for the investigated conditions and fuels. Most influential species and reactions on the combustion of butyl acetate were identified. The corresponding thermodynamic parameter and rate coefficients were quantified through ab initio calculations. A reduced detailed kinetic mechanism was produced and implemented in an open-source computational fluid dynamics model to characterize pool fires caused by the accidental release of aviation fuel and liquefied natural gas, at first. Eventually, partial oxidation processes involving light alkenes were optimized following the quick, fair, and smoot (QFS) paradigm. The proposed procedure represents a comprehensive and multidisciplinary approach for the construction and validation of accurate models, allowing for the characterization of developing industrial sectors and techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of structured catalysts active in the catalytic partial oxidation of methane to syngas, was performed by electrosynthesis of hydroxides on FeCrAlloy foams and fibers. Rh/Mg/Al hydrotalcite-type compounds were prepared by co-precipitation of metallic cations on the support and successive calcination. Electrochemical reactions have been studied during the electrodeposition by linear sweep voltammetry. The experiments were performed at supports immersed in KNO3, KCl, Mg2+ and Al3+ aqueous solutions, starting by different precursors (nitrate and chlorides salts) and modifying the Mg/A ratio. Rh/Mg/Al hydrotalcite-type compounds were deposited on metal foams by applying a -1.2V vs SCE potential for 2000s with a nitrate solution of 0.06M total metal concentration. Firstly it was studied the effect of Mg on the coating propierties, modifying the Rh/Mg/Al atomic ratio (5/70/25, 5/50/45, 5/25/70 e 5/0/95). Then the effect of the amount of Rh was later investigated in the sample with the largest Mg content (Rh/Mg/Al = 5/70/25 and 2/70/28).The results showed that magnesium allowed obtaining the most homogeneous and well adherent coatings, wherein rhodium was well dispersed. The sample with the Rh/Mg /Al ratio equal to5/70/25 showed the best catalytic performances. Decreasing the Rh content, the properties of the coating were not modified, but the catalytic activity was lower, due to a not enough number of active sites to convert the methane. The work on metal fibers focused on the effect of precursor concentration, keeping constant composition, potential and synthesis time at the values of Rh/Mg/Al =5/70/25, -1.2V vs SCE and 1000s. However fibers geometry did not allow to obtain a high quality coating, even if results were quite promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalysts` precursor of Co/Mg/Al promoted with Ce and La were tested in the steam reforming of methane (SRM). The addition of promoters was made by anion-exchange. The oxides characterization was made by X-ray Photoelectron Spectroscopy (XPS) analysis that confirmed Co(2+) species in free form on surface and interacted with Mg and Al in the form of solid solution. In the SRM with high fed molar ratio of H(2)O:CH(4) = 4:1, the catalysts showed a great affinity with water and immediately deactivated by oxidation of the active sites. In the stoichiometric ratio of H(2)O:CH(4) = 2: 1 the catalysts were active and presented low carbon deposition during the time reaction tested. Also a test with low fed molar ratio H(2)O:CH(4) = 0.5:1 was carried out to evaluate the stability of the catalysts by CH(4) decomposition and all the catalysts were stable during 6 h of reaction. Promoted catalysts presented lower carbon deposition. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catalyst precursors composed of Ni/Mg/Al oxides with added La and Ce were tested in ethanol steam reforming (ESR) reactions. La and Ce were added by anion-exchange. The oxides were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) analysis. The catalyst precursors consist of a mixture of oxides, with the nickel in the form of NiO strongly interacting with the support Mg/Al. The XPS analysis showed a lanthanum-support interaction, but no interaction of Ce species with the support. The reaction data obtained with the active catalysts showed that the addition of Ce and La resulted in better H(2) production at 550 degrees C. The CeNi catalyst provided the higher ethanol conversion, with lower acetaldehyde production, possibly clue to a favoring of water adsorption on the weakly interacting clusters of CeO(2) on the surface. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vanadium/titanium mixed oxide films were produced using the sol-gel route. The structural investigation revealed that increased TiO2 molar ratio in the mixed oxide disturbs the V2O5 crystalline structure and makes it amorphous. This blocks the TiO2 phase transformation, so TiO2 stabilizes in the anatase phase. In addition the surface of the sample always presents larger amounts of TiO2 than expected, revealing a concentration gradient along the growth direction. For increased TiO2 molar ratios the roughness of the surface is reduced. Ion sensors were fabricated using the extended gate field effect transistor configuration. The obtained sensitivities varied in the range of 58 mV/pH down to 15 mV/pH according to the composition and morphology of the surface of the samples. Low TiO2 amounts presented better sensing properties that might be related to the cracked and inhomogeneous surfaces. Rising the TiO2 quantity in the films produces homogeneous surfaces but diminishes their sensitivities. Thus, the present paper reveals that the compositional and structural aspects change the surface morphology and electrical properties accounting for the final ion sensing properties of the V2O5/TiO2 films. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.053206jes] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research of new catalysts for the hydrogen production described in this thesis was inserted within a collaboration of Department of Industrial Chemistry and Materials of University of Bologna and Air Liquide (Centre de Recherche Claude-Delorme, Paris). The aim of the work was focused on the study of new materials, active and stable in the hydrogen production from methane, using either a new process, the catalytic partial oxidation (CPO), or a enhanced well-established process, the steam methane reforming (SMR). Two types of catalytic materials were examined: 1) Bulk catalysts, i.e. non-supported materials, in which the active metals (Ni and/or Rh) are stabilized inside oxidic matrix, obtained from perovskite type compounds (PVK) and from hydrotalcite type precursors (HT); 2) Structured catalysts, i.e. catalysts supported on materials having high thermal conductivity (SiC and metallic foams). As regards the catalytic partial oxidation, the effect of the metal (Ni and/or Rh), the role of the metal/matrix ratio and the matrix formulation of innovative catalysts obtained from hydrotalcite type precursors and from perovskites were examined. In addition, about steam reforming process, the study was carried out first on commercial type catalysts, examining the deactivation in industrial conditions, the role of the operating conditions and the activity of different type of catalysts. Then, innovative materials bulk (PVK and HT) and structured catalysts (SiC and metallic foam) were studied and a new preparation method was developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide has the potential to greatly improve intravascular measurements by locally inhibiting thrombus formation and dilating blood vessels. pH, the partial pressure of oxygen, and the partial pressure of carbon dioxide are three arterial blood parameters that are of interest to clinicians in the intensive care unit that can benefit from an intravascular sensor. This work explores fabrication of absorbance and fluorescence based pH sensing chemistry, the sensing chemistries' compatibility with nitric oxide, and a controllable nitric oxide releasing polymer. The pH sensing chemistries utilized various substrates, dyes, and methods of immobilization. Absorbance sensing chemistries used sol-gels, fumed silica particles, mesoporous silicon oxide, bromocresol purple, phenol red, bromocresol green, physical entrapment, molecular interactions, and covalent linking. Covalently linking the dyes to fumed silica particles and mesoporous silicon oxide eliminated leaching in the absorbance sensing chemistries. The structures of the absorbance dyes investigated were similar and bromocresol green in a sol-gel was tested for compatibility with nitric oxide. Nitric oxide did not interfere with the use of bromocresol green in a pH sensor. Investigated fluorescence sensing chemistries utilized silica optical fibers, poly(allylamine) hydrogel, SNARF-1, molecular interactions, and covalent linking. SNARF-1 covalently linked to a modified poly(allylamine) hydrogel was tested in the presence of nitric oxide and showed no interference from the nitric oxide. Nitric oxide release was controlled through the modulation of a light source that cleaved the bond between the nitric oxide and a sulfur atom in the donor. The nitric oxide donor in this work is S-nitroso-N-acetyl-D-penicillamine which was covalently linked to a silicone rubber made from polydimethylsiloxane. It is shown that the surface flux of nitric oxide released from the polymer films can be increased and decreased by increasing and decreasing the output power of the LED light source. In summary, an optical pH sensing chemistry was developed that eliminated the chronic problem of leaching of the indicator dye and showed no reactivity to nitric oxide released, thereby facilitating the development of a functional, reliable intravascular sensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six sensor units each having a pH, dissolved oxygen (DO) and oxidation reduction potential (ORP) sensor, plus a central logger, and connection cables were purchased from RBR (Ottawa). The sensing loggers were placed at a transect across the hot spot. Unfortunately, 5 of the 7 loggers were drowned. Only the central logger, that collected the data from the 6 sensor loggers, and one of the sensor loggers remained dry and functional. The sensor was positioned at 50 m south of the frame, in the center of the hot spot. The ORP did not show interpretable signals. The DO and pH signals showed good correlation (. At the end of October 2009 both signals decreased, the pH became as low as 4, possibly indicating increased seepage, or burial in expelled sediments. In December both sensors regained seawater values and then decreased again until the end of May 2010. A pH of 4 can only be reached by very high carbondioxide levels. The dynamics of the signals indicate eruptions and sediment movements from October 2009 till the end of the deployment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behaviour of Nafion® polymeric membranes containing acid-base dyes, bromothymol blue (BB) and methyl violet (MV), were studied aiming at constructing an optical sensor for pH measurement. BB revealed to be inadequate for developing sensing phases due to the electrostatic repulsion between negative groups of their molecules and the negative charge of the sulfonate group of the Nafion®, which causes leaching of the dye from the membrane. On the other hand, MV showed to be suitable due to the presence of positive groups in its structure. The membrane prepared from a methanolic solution whose Nafion®/dye molar ratio was 20 presented the best analytical properties, changing its color from green to violet in the pH range from 0.6 to 3.0. The membrane can be prepared with good reproducibility, presenting durability of ca. 6 months and response time of 22 s, making possible its use for pH determination in flow analysis systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have shown that partial oxidation by advanced oxidation processes (AOP) is able to transform hard-to-degrade compounds and increase their biodegradability. In this work, anaerobic treatment was followed by ozonation, UV radiation and ozonation in the presence of UV radiation, to treat bleaching effluents from a cellulose kraft Pulp plant. The anaerobic reactor (horizontal anaerobic immobilized Sludge bed, HAISB) was Used as a pretreatment to reduce the efficient organic load before applying ACIP. The ozone treatments were applied in three different pH environments (3, 8 and 10) with retention times of 10, 30, 45 and 60 min. COD and adsorbable organic halogens (AOX) removal efficiencies at the HAISB were approximately 50%, while the BOD removal efficiency reached 80%. Ozonation promoted further removal of AOX and COD so that the combined efficiency reached 96% for AOX and 70% for COD. In the oxidation process, BOD was either removed in small quantities or actually increased, as intended, so that a second biological treatment would be able to complete the treatment. The maximum increase in the BOD(5)/COD ratio (biodegradability indicator) Occurred at pH 8, reaching 104% for ozonation at a dosage of 1540 mg(O3).L(-1). Applying UV radiation alone resulted in lower values: a 34% increase ill the BOD(5)/COD ratio and a 76% AOX removal efficiency. These results indicate that the combination of anaerobic treatment with ozonation or ozonation/UV radiation improves the treatability of cellulose pulp bleaching efficients and that the resulting wastewater is suitable for further biological treatment under aerobic conditions with a low level of toxic compounds from the halogenated family.