897 resultados para electronic structure of PrMnO3
Resumo:
The adsorption of alanine on Cu {110} was studied by a combination of near edge X-ray absorption fine structure (NEXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). Large chemical shifts in the C 1s, N 1s, and O 1s XP spectra were found between the alanine multilayer and the chemisorbed and pseudo-(3 x 2) alaninate layers. From C, N, and O K-shell NEXAFS spectra the tilt angles of the carboxylate group (approximate to 26 degrees in plane with respect to [1 (1) over bar0] and approximate to 45 degrees out of plane) and the C-N bond angle with respect to [1 (1) over bar0] could be determined for the pseudo-(3 x 2) overlayer. Using this information three adsorption geometries could be eliminated from five p(3 x 2) structures which lead to almost identical heats of adsorption in the DFT calculations between 1.40 and 1.47 eV/molecule. Due to the small energy difference between the remaining two structures it is not unlikely that these coexist on the surface at room temperature. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Different models for the electronic structure of carbon monoxide are suggested in influential textbooks. Therefore, this electronic structure offers an interesting subject in teaching because it can be used as an example to relate seemingly conflicting concepts. Understanding the connections between ostensibly different methods and between different concepts, related or conflicting, is important in academic studies. The related reactivities of CO, O2, and N-2 and the notations of molecular orbitals are topics of interest and are discussed in detail.
Resumo:
The dissymmetrical naphthalene-bridged complexes [Cp′Fe(μ-C10H8)FeCp*] (3; Cp* = η5-C5Me5, Cp′ = η5-C5H2-1,2,4-tBu3) and [Cp′Fe(μ-C10H8)RuCp*] (4) were synthesized via a one-pot procedure from FeCl2(thf)1.5, Cp′K, KC10H8, and [Cp* FeCl(tmeda)] (tmeda = N,N,N′,N′- tetramethylethylenediamine) or [Cp*RuCl]4, respectively. The symmetrically substituted iron ruthenium complex [Cp*Fe(μ-C10H8)RuCp*] (5) bearing two Cp* ligands was prepared as a reference compound. Compounds 3−5 are diamagnetic and display similar molecular structures, where the metal atoms are coordinated to opposite sides of the bridging naphthalene molecule. Cyclic voltammetry and UV/vis spectroelectrochemistry studies revealed that neutral 3−5 can be oxidized to monocations 3+−5+ and dications 32+−52+. The chemical oxidation of 3 and 4 with [Cp2Fe]PF6 afforded the paramagnetic hexafluorophosphate salts [Cp′Fe(μ-C10H8)FeCp*]PF6 ([3]PF6) and [Cp′Fe(μ-C10H8)RuCp*]PF6 ([4]PF6), which were characterized by various spectroscopic techniques, including EPR and 57Fe Mössbauer spectroscopy. The molecular structure of [4]PF6 was determined by X-ray crystallography. DFT calculations support the structural and spectroscopic data and determine the compositions of frontier molecular orbitals in the investigated complexes. The effects of substituting Cp* with Cp′ and Fe with Ru on the electronic structures and the structural and spectroscopic properties are analyzed.
Resumo:
The self-consistent spin-polarized band-structure calculation of ferromagnetic compound MnBiAl in its low-temperature phase has been performed. In this paper the calculation results are given. Comparison with the results of MnBi is performed in order to find the effect on electronic structure by doping with Al.
Resumo:
FeM2X4 spinels, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. We present here a computational study of the inversion thermodynamics and the electronic structure of these (thio)spinels for M = Cr, Mn, Co, Ni, using calculations based on the density functional theory with on-site Hubbard corrections (DFT+U). The analysis of the configurational free energies shows that different behaviour is expected for the equilibrium cation distributions in these structures: FeCr2X4 and FeMn2S4 are fully normal, FeNi2X4 and FeCo2S4 are intermediate, and FeCo2O4 and FeMn2O4 are fully inverted. We have analyzed the role played by the size of the ions and by the crystal field stabilization effects in determining the equilibrium inversion degree. We also discuss how the electronic and magnetic structure of these spinels is modified by the degree of inversion, assuming that this could be varied from the equilibrium value. We have obtained electronic densities of states for the completely normal and completely inverse cation distribution of each compound. FeCr2X4, FeMn2X4, FeCo2O4 and FeNi2O4 are half-metals in the ferrimagnetic state when Fe is in tetrahedral positions. When M is filling the tetrahedral positions, the Cr-containing compounds and FeMn2O4 are half-metallic systems, while the Co and Ni spinels are insulators. The Co and Ni sulfide counterparts are metallic for any inversion degree together with the inverse FeMn2S4. Our calculations suggest that the spin filtering properties of the FeM2X4 (thio)spinels could be modified via the control of the cation distribution through variations in the synthesis conditions.
Resumo:
Understanding the origin of the properties of metal-supported metal thin films is important for the rational design of bimetallic catalysts and other applications, but it is generally difficult to separate effects related to strain from those arising from interface interactions. Here we use density functional (DFT) theory to examine the structure and electronic behavior of few-layer palladium films on the rhenium (0001) surface, where there is negligible interfacial strain and therefore other effects can be isolated. Our DFT calculations predict stacking sequences and interlayer separations in excellent agreement with quantitative low-energy electron diffraction experiments. By theoretically simulating the Pd core-level X-ray photoemission spectra (XPS) of the films, we are able to interpret and assign the basic features of both low-resolution and high-resolution XPS measurements. The core levels at the interface shift to more negative energies, rigidly following the shifts in the same direction of the valence d-band center. We demonstrate that the valence band shift at the interface is caused by charge transfer from Re to Pd, which occurs mainly to valence states of hybridized s-p character rather than to the Pd d-band. Since the d-band filling is roughly constant, there is a correlation between the d-band center shift and its bandwidth. The resulting effect of this charge transfer on the valence d-band is thus analogous to the application of a lateral compressive strain on the adlayers. Our analysis suggests that charge transfer should be considered when describing the origin of core and valence band shifts in other metal / metal adlayer systems.
Resumo:
Metal-organic frameworks (MOFs) can be exceptionally good catalytic materials thanks to the presence of active metal centres and a porous structure that is advantageous for molecular adsorption and confinement. We present here a first-principles investigation of the electronic structure of a family of MOFs based on porphyrins connected through phenyl-carboxyl ligands and AlOH species, in order to assess their suitability for the photocatalysis of fuel production reactions using sunlight. We consider structures with protonated porphyrins and those with the protons exchanged with late 3d metal cations (Fe2+, Co2+, Ni2+, Cu2+, Zn2+), a process that we find to be thermodynamically favorable from aqueous solution for all these metals. Our band structure calculations, based on an accurate screened hybrid functional, reveal that the bandgaps are in a favorable range (2.0 to 2.6 eV) for efficient adsorption of solar light. Furthermore, by approximating the vacuum level to the pore center potential, we provide the alignment of the MOFs’ band edges with the redox potentials for water splitting and carbon dioxide reduction, and show that the structures studied here have band edges positions suitable for these reactions at neutral pH.
Resumo:
Multiconfigurational second-order perturbation theory (CASSCF//CASPT2) and quadruple-zeta ANO-RCC basis sets were employed to investigate the ground and low-lying electronic states of MoB and MoB(+). Spectroscopic constants, potential energy curves, wavefunctions, Mulliken population analyses, and ionization energies are given. The ground state of MoB is of X(6)Pi symmetry (R(e) = 1.968 angstrom, omega(e) = 664 cm(-1), and mu = 2.7 D), giving rise to a Omega = 7/2 ground state after including spin-orbit coupling. For MoB(+), the ground state is computed to be of X(7)Sigma(+) symmetry (R(e) = 2.224 angstrom, omega(e) = 141 cm(-1), and mu = 1.2 D), with an adiabatic ionization energy of 7.19 eV and a vertical one of 7.53 eV. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem 111: 3362-3370, 2011
Resumo:
We describe a new physicochemical descriptor of the antioxidant activity of phenols, the energy difference between the two highest occupied molecular orbitals, which we believe will improve quantitative structure-activity relationship studies about these compounds. (C) 2003 Wiley Periodicals, Inc.
Resumo:
The Generator Coordinate Hartree-Fock (GCHF) method is applied to generate extended (20s14p), (30s19p13d), and (31s23p18d) Gaussian basis sets for the 0, Mn, and La atoms, respectively. The role of the weight functions (WFs) in the assessment of the numerical integration range of the GCHF equations is shown. These basis sets are then contracted to [5s3p] and [11s6p6d] for 0 and Mn atoms, respectively, and [17s11p7d] for La atom by a standard procedure. For quality evaluation of contracted basis sets in molecular calculations, we have accomplished calculations of total and orbital energies in the Hartree-Fock-Roothaan (HFR) method for (MnO1+)-Mn-5 and (LaO1+)-La-1 fragments. The results obtained with the contracted basis sets are compared with values obtained with the extended basis sets. The addition of one d polarization function in the contracted basis set for 0 atom and its utilization with the contracted basis sets for Mn and La atoms leads to the calculations of dipole moment and total atomic charges of perovskite (LaMnO3). The calculations were performed at the HFR level with the crystal [LaMnO3](2) fragment in space group C-2v the values of dipole moment, total energy, and total atomic charges showed that it is reasonable to believe that LaMnO3 presents behaviour of piezoelectric material. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Mixed oxide compounds, such as TiO2-SnO2 system are widely used as gas sensors and should also provide varistor properties modifying the TiO2 surface. Therefore, a theoretical investigation has been carried out characterizing the effect of SnO2 on TiO2 addition on the electronic structure by means of ab initio SCF-LCAO calculations using all electrons. In order to take into account the finite size of the cluster, we have used the point charge model for the (TiO2)(15) cluster to study the effect on electronic structure of doping the TiO2 (110) Surface. The contracted basis set for titanium (4322/42/3), oxygen (33/3) and tin (43333/4333/43) atoms were used. The charge distributions, dipole moments, and density of states of doping TiO2 and vacancy formation are reported and analysed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Ellipticine and its derivatives are a class of molecules that show antitumor and cytotoxic activity with a multimodal mechanism of action. In this paper we report a preliminary Austin Method One (AM1) study of ellipticine and some molecules derived from it. We have observed a relationship between charge density distribution and biological selectivity. A mechanism that could improve cytotoxic activity is proposed.
Resumo:
The relation between the composition and electronic structure of the perfectly inverse spinel compound Zn7-xMxSb2O12 (M = Ni and Co) has been studied by powder X-ray diffraction and X-ray photoelectron spectroscopy. Changes in the site occupancy are associated with shifts in the core levels as observed in the core level spectral analyses. The configuration of the density of states in the valence band due to the Co and Ni states can be observed in the valence band spectra. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure of Pb1-xLaxTiO3 (PLT) compounds for x ranging from 0 to 30 at. % of La is investigated by means of soft x-ray absorption near edge structure (XANES) at the Ti L-3,L-2 and O K edges. The greatest modification in the structure of the Ti 2p XANES spectra of the PLT compounds is observed in the region of the high energy peak of the L-3 edge (e(g) states), which exhibits a splitting in the undoped sample. As the amount of lanthanum increases, this splitting becomes less pronounced. This modification is interpreted as a decrease in the degree of disorder of titanium atoms, which is correlated to the substitution of Pb by La atoms. The structural changes observed at the low energy peaks of the O K-edge XANES spectra of the PLT compounds may be interpreted in terms of hybridization between O 2p, Ti 3d, and Pb 6p orbitals. A decrease in the degree of hybridization observed as Pb atoms are replaced by La atoms may be related to the differences in the ferroelectric properties observed between x=0.0 and x=0.30 compounds. (c) 2006 American Institute of Physics.
Resumo:
The generator coordinate Hartree-Fock method was used to develop 20s17p, 30s20p14d, and 30s21p16d Gaussian basis sets for the O ((3)p), Mn (S-6), and Y (D-2) atoms, respectively. The Gaussian basis sets were contracted to 20s17p/9s7p, 30s20p14d/11s7p7d, and 30s21p16d/14s7p7d and utilized in calculations of total energy and orbital energies of the (MnO1+)-Mn-5 and (YO1+)-Y-3 fragments to evaluate its quality in molecular studies. Finally, the contracted basis set for O atom was supplemented with one polarization function of d symmetry and used along with the other contracted basis sets (for Mn and Y) to calculate dipole moments, total energy, and total atomic charges in YMnO3 in space group D-6h. The analysis of those properties showed that is reasonable to believe that YMnO3 present behavior of piezoelectric material. (C) 2003 Elsevier B.V. All rights reserved.