841 resultados para electronic signature


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epigenetic post-transcriptional modifications of histone tails are thought to help in coordinating gene expression during development. An epigenetic signature is set in pluripotent cells and interpreted later at the onset of differentiation. In pluripotent cells, epigenetic marks normally associated with active genes (H3K4me3) and with silent genes (H3K27me3) atypically co-occupy chromatin regions surrounding the promoters of important developmental genes. However, it is unclear how these epigenetic marks are recognized when cell differentiation starts and what precise role they play. Here, we report the essential role of the nuclear receptor peroxisome proliferator-activated receptor β (PPARβ, NR1C2) in Xenopus laevis early development. By combining loss-of-function approaches, large throughput transcript expression analysis by the mean of RNA-seq and intensive chromatin immunoprecipitation experiments, we unveil an important cooperation between epigenetic marks and PPARβ. During Xenopus laevis gastrulation PPARβ recognizes H3K27me3 marks that have been deposited earlier at the pluripotent stage to activate early differentiation genes. Thus, PPARβis the first identified transcription factor that interprets an epigenetic signature of pluripotency, in vivo, during embryonic development. This work paves the way for a better mechanistic understanding of how the activation of hundreds of genes is coordinated during early development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphology is the aspect of language concerned with the internal structure of words. In the past decades, a large body of masked priming (behavioral and neuroimaging) data has suggested that the visual word recognition system automatically decomposes any morphologically complex word into a stem and its constituent morphemes. Yet the reliance of morphology on other reading processes (e.g., orthography and semantics), as well as its underlying neuronal mechanisms are yet to be determined. In the current magnetoencephalography study, we addressed morphology from the perspective of the unification framework, that is, by applying the Hold/Release paradigm, morphological unification was simulated via the assembly of internal morphemic units into a whole word. Trials representing real words were divided into words with a transparent (true) or a nontransparent (pseudo) morphological relationship. Morphological unification of truly suffixed words was faster and more accurate and additionally enhanced induced oscillations in the narrow gamma band (60-85 Hz, 260-440 ms) in the left posterior occipitotemporal junction. This neural signature could not be explained by a mere automatic lexical processing (i.e., stem perception), but more likely it related to a semantic access step during the morphological unification process. By demonstrating the validity of unification at the morphological level, this study contributes to the vast empirical evidence on unification across other language processes. Furthermore, we point out that morphological unification relies on the retrieval of lexical semantic associations via induced gamma band oscillations in a cerebral hub region for visual word form processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sarcomas are heterogeneous and aggressive mesenchymal tumors. Histological grading has so far been the best predictor for metastasis-free survival, but it has several limitations, such as moderate reproducibility and poor prognostic value for some histological types. To improve patient grading, we performed genomic and expression profiling in a training set of 183 sarcomas and established a prognostic gene expression signature, complexity index in sarcomas (CINSARC), composed of 67 genes related to mitosis and chromosome management. In a multivariate analysis, CINSARC predicts metastasis outcome in the training set and in an independent 127 sarcomas validation set. It is superior to the Fédération Francaise des Centres de Lutte Contre le Cancer grading system in determining metastatic outcome for sarcoma patients. Furthermore, it also predicts outcome for gastrointestinal stromal tumors (GISTs), breast carcinomas and lymphomas. Application of the signature will permit more selective use of adjuvant therapies for people with sarcomas, leading to decreased iatrogenic morbidity and improved outcomes for such individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treg are the main mediators of dominant tolerance. Their mechanisms of action and applications are subjects of considerable debate currently. However, a human microRNA (miR) Treg signature has not been described yet. We investigated human natural Treg and identified a signature composed of five miR (21, 31, 125a, 181c and 374). Among those, two were considerably under-expressed (miR-31 and miR-125a). We identified a functional target sequence for miR-31 in the 3' untranslated region (3' UTR) of FOXP3 mRNA. Using lentiviral transduction of fresh cord blood T cells, we demonstrated that miR-31 and miR-21 had an effect on FOXP3 expression levels. We showed that miR-31 negatively regulates FOXP3 expression by binding directly to its potential target site in the 3' UTR of FOXP3 mRNA. We next demonstrated that miR-21 acted as a positive, though indirect, regulator of FOXP3 expression. Transduction of the remaining three miR had no direct effect on FOXP3 expression or on the phenotype and will remain the subject of future investigations. In conclusion, not only have we identified and validated a miR signature for human natural Treg, but also unveiled some of the mechanisms by which this signature was related to the control of FOXP3 expression in these cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Several studies have established Glioblastoma Multiforme (GBM) prognostic and predictive models based on age and Karnofsky Performance Status (KPS), while very few studies evaluated the prognostic and predictive significance of preoperative MR-imaging. However, to date, there is no simple preoperative GBM classification that also correlates with a highly prognostic genomic signature. Thus, we present for the first time a biologically relevant, and clinically applicable tumor Volume, patient Age, and KPS (VAK) GBM classification that can easily and non-invasively be determined upon patient admission. METHODS: We quantitatively analyzed the volumes of 78 GBM patient MRIs present in The Cancer Imaging Archive (TCIA) corresponding to patients in The Cancer Genome Atlas (TCGA) with VAK annotation. The variables were then combined using a simple 3-point scoring system to form the VAK classification. A validation set (N = 64) from both the TCGA and Rembrandt databases was used to confirm the classification. Transcription factor and genomic correlations were performed using the gene pattern suite and Ingenuity Pathway Analysis. RESULTS: VAK-A and VAK-B classes showed significant median survival differences in discovery (P = 0.007) and validation sets (P = 0.008). VAK-A is significantly associated with P53 activation, while VAK-B shows significant P53 inhibition. Furthermore, a molecular gene signature comprised of a total of 25 genes and microRNAs was significantly associated with the classes and predicted survival in an independent validation set (P = 0.001). A favorable MGMT promoter methylation status resulted in a 10.5 months additional survival benefit for VAK-A compared to VAK-B patients. CONCLUSIONS: The non-invasively determined VAK classification with its implication of VAK-specific molecular regulatory networks, can serve as a very robust initial prognostic tool, clinical trial selection criteria, and important step toward the refinement of genomics-based personalized therapy for GBM patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: A 70-gene signature was previously shown to have prognostic value in patients with node-negative breast cancer. Our goal was to validate the signature in an independent group of patients. METHODS: Patients (n = 307, with 137 events after a median follow-up of 13.6 years) from five European centers were divided into high- and low-risk groups based on the gene signature classification and on clinical risk classifications. Patients were assigned to the gene signature low-risk group if their 5-year distant metastasis-free survival probability as estimated by the gene signature was greater than 90%. Patients were assigned to the clinicopathologic low-risk group if their 10-year survival probability, as estimated by Adjuvant! software, was greater than 88% (for estrogen receptor [ER]-positive patients) or 92% (for ER-negative patients). Hazard ratios (HRs) were estimated to compare time to distant metastases, disease-free survival, and overall survival in high- versus low-risk groups. RESULTS: The 70-gene signature outperformed the clinicopathologic risk assessment in predicting all endpoints. For time to distant metastases, the gene signature yielded HR = 2.32 (95% confidence interval [CI] = 1.35 to 4.00) without adjustment for clinical risk and hazard ratios ranging from 2.13 to 2.15 after adjustment for various estimates of clinical risk; clinicopathologic risk using Adjuvant! software yielded an unadjusted HR = 1.68 (95% CI = 0.92 to 3.07). For overall survival, the gene signature yielded an unadjusted HR = 2.79 (95% CI = 1.60 to 4.87) and adjusted hazard ratios ranging from 2.63 to 2.89; clinicopathologic risk yielded an unadjusted HR = 1.67 (95% CI = 0.93 to 2.98). For patients in the gene signature high-risk group, 10-year overall survival was 0.69 for patients in both the low- and high-clinical risk groups; for patients in the gene signature low-risk group, the 10-year survival rates were 0.88 and 0.89, respectively. CONCLUSIONS: The 70-gene signature adds independent prognostic information to clinicopathologic risk assessment for patients with early breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: It is accepted that a woman's lifetime risk of developing breast cancer after menopause is reduced by early full term pregnancy and multiparity. This phenomenon is thought to be associated with the development and differentiation of the breast during pregnancy. METHODS: In order to understand the underlying molecular mechanisms of pregnancy induced breast cancer protection, we profiled and compared the transcriptomes of normal breast tissue biopsies from 71 parous (P) and 42 nulliparous (NP) healthy postmenopausal women using Affymetrix Human Genome U133 Plus 2.0 arrays. To validate the results, we performed real time PCR and immunohistochemistry. RESULTS: We identified 305 differentially expressed probesets (208 distinct genes). Of these, 267 probesets were up- and 38 down-regulated in parous breast samples; bioinformatics analysis using gene ontology enrichment revealed that up-regulated genes in the parous breast represented biological processes involving differentiation and development, anchoring of epithelial cells to the basement membrane, hemidesmosome and cell-substrate junction assembly, mRNA and RNA metabolic processes and RNA splicing machinery. The down-regulated genes represented biological processes that comprised cell proliferation, regulation of IGF-like growth factor receptor signaling, somatic stem cell maintenance, muscle cell differentiation and apoptosis. CONCLUSIONS: This study suggests that the differentiation of the breast imprints a genomic signature that is centered in the mRNA processing reactome. These findings indicate that pregnancy may induce a safeguard mechanism at post-transcriptional level that maintains the fidelity of the transcriptional process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulatory T cells (Tregs) play a key role in immune system homeostasis and tolerance to antigens, thereby preventing autoimmunity, and may be partly responsible for the lack of an appropriate immune response against tumor cells. Although not sufficient, a high expression of forkhead box P3 (FOXP3) is necessary for their suppressive function. Recent reports have shown that histones deacetylase inhibitors increased FOXP3 expression in T cells. We therefore decided to investigate in non-Tregs CD4-positive cells, the mechanisms by which an aspecific opening of the chromatin could lead to an increased FOXP3 expression. We focused on binding of potentially activating transcription factors to the promoter region of FOXP3 and on modifications in the five miRs constituting the Tregs signature. Valproate treatment induced binding of Ets-1 and Ets-2 to the FOXP3 promoter and acted positively on its expression, by increasing the acetylation of histone H4 lysines. Valproate treatment also induced the acquisition of the miRs Tregs signature. To elucidate whether the changes in the miRs expression could be due to the increased FOXP3 expression, we transduced these non-Tregs with a FOXP3 lentiviral expression vector, and found no changes in miRs expression. Therefore, the modification in their miRs expression profile is not due to an increased expression of FOXP3 but directly results from histones deacetylase inhibition. Rather, the increased FOXP3 expression results from the additive effects of Ets factors binding and the change in expression level of miR-21 and miR-31. We conclude that valproate treatment of human non-Tregs confers on them a molecular profile similar to that of their regulatory counterpart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Invasion and metastasis are two important hallmarks of malignant tumors caused by complex genetic and epigenetic alterations. The present study investigated the contribution of aberrant methylation profiles of cancer related genes, APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P14 (ARF), P16 (CDKN2A), P21 (CDKN1A), PTEN, and TIMP3, in the matched axillary lymph node metastasis in comparison to the primary tumor tissue and the adjacent normal tissue from the same breast cancer patients to identify the potential of candidate genes methylation as metastatic markers. METHODS: The quantitative methylation analysis was performed using the SEQUENOM's EpiTYPER? assay which relies on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). RESULTS: The quantitative DNA methylation analysis of the candidate genes showed higher methylation proportion in the primary tumor tissue than that of the matched normal tissue and the differences were significant for the APC, BIN1, BMP6, BRCA1, CST6, ESR-b, P16, PTEN and TIMP3 promoter regions (P<0.05). Among those candidate methylated genes, APC, BMP6, BRCA1 and P16 displayed higher methylation proportion in the matched lymph node metastasis than that found in the normal tissue (P<0.05). The pathway analysis revealed that BMP6, BRCA1 and P16 have a role in prevention of neoplasm metastasis. CONCLUSIONS: The results of the present study showed methylation heterogeneity between primary tumors and metastatic lesion. The contribution of aberrant methylation alterations of BMP6, BRCA1 and P16 genes in lymph node metastasis might provide a further clue to establish useful biomarkers for screening metastasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: We developed interferon-α-kinoid (IFN-K), a drug composed of inactivated IFNα coupled to a carrier protein, keyhole limpet hemocyanin. In human IFNα-transgenic mice, IFN-K induces polyclonal antibodies that neutralize all 13 subtypes of human IFNα. We also previously demonstrated that IFN-K slows disease progression in a mouse model of systemic lupus erythematosus (SLE). This study was undertaken to examine the safety, immunogenicity, and biologic effects of active immunization with IFN-K in patients with SLE. METHODS: We performed a randomized, double-blind, placebo-controlled, phase I/II dose-escalation study comparing 3 or 4 doses of 30 μg, 60 μg, 120 μg, or 240 μg of IFN-K or placebo in 28 women with mild to moderate SLE. RESULTS: IFN-K was well tolerated. Two SLE flares were reported as serious adverse events, one in the placebo group and the other in a patient who concomitantly stopped corticosteroids 2 days after the first IFN-K dose, due to mild fever not related to infection. Transcriptome analysis was used to separate patients at baseline into IFN signature-positive and -negative groups, based on the spontaneous expression of IFN-induced genes. IFN-K induced anti-IFNα antibodies in all immunized patients. Notably, significantly higher anti-IFNα titers were found in signature-positive patients than in signature-negative patients. In IFN signature-positive patients, IFN-K significantly reduced the expression of IFN-induced genes. The decrease in IFN score correlated with the anti-IFNα antibody titer. Serum complement C3 levels were significantly increased in patients with high anti-IFNα antibody titers. CONCLUSION: These results show that IFN-K is well tolerated, immunogenic, and significantly improves disease biomarkers in SLE patients, indicating that further studies of its clinical efficacy are warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To better understand the relationship between tumor-host interactions and the efficacy of chemotherapy, we have developed an analytical approach to quantify several biological processes observed in gene expression data sets. We tested the approach on tumor biopsies from individuals with estrogen receptor-negative breast cancer treated with chemotherapy. We report that increased stromal gene expression predicts resistance to preoperative chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC) in subjects in the EORTC 10994/BIG 00-01 trial. The predictive value of the stromal signature was successfully validated in two independent cohorts of subjects who received chemotherapy but not in an untreated control group, indicating that the signature is predictive rather than prognostic. The genes in the signature are expressed in reactive stroma, according to reanalysis of data from microdissected breast tumor samples. These findings identify a previously undescribed resistance mechanism to FEC treatment and suggest that antistromal agents may offer new ways to overcome resistance to chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary Background Dermatophytes are the main cause of superficial mycoses in humans and animals. Molecular research has given useful insights into the phylogeny and taxonomy of the dermatophytes to overcome the difficulties with conventional diagnostics. Objectives The Trichophyton mentagrophytes complex consists of anthropophilic as well as zoophilic species. Although several molecular markers have been developed for the differentiation of strains belonging to T. mentagrophytes sensu lato, correct identification still remains problematic, especially concerning the delineation of anthropophilic and zoophilic strains of T. interdigitale. This differentiation is not academic but is essential for selection of the correct antimycotic therapy to treat infected patients. Methods One hundred and thirty isolates identified by morphological characteristics as T. mentagrophytes sensu lato were investigated using restriction fragment length polymorphism (RFLP) and sequence analysis of the polymerase chain reaction-amplified internal transcribed spacer (ITS) region of the rDNA. Results Species of this complex produced individual RFLP patterns obtained by the restriction enzyme MvaI. Subsequent sequence analysis of the ITS1, 5.8S and ITS2 region of all strains, but of T. interdigitale in particular, revealed single unique polymorphisms in anthropophilic and zoophilic strains. Conclusions Signature polymorphisms were observed to be useful for the differentiation of these strains and epidemiological data showed a host specificity among zoophilic strains of T. interdigitale/Arthroderma vanbreuseghemii compared with A. benhamiae as well as characteristic clinical pictures in humans when caused by zoophilic or anthropophilic strains. The delineation is relevant because it helps in determining the correct treatment and provides clues regarding the source of the infection.