993 resultados para electrochemical corrosion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The localized corrosion of Al-(5.03%)Zn-(1.67%)Mg-(0.23%)Cu alloys and high purity Al has been studied using electrochemical techniques, optical microscopy, SEM and EDX. The samples were previously submitted to different heat treatments in which coherent and incoherent MgZn 2 precipitates with different distribution and aggregation degree were produced. The influence of NaCl and Na 2SO 4, dissolved oxygen, immersion time and convection were studied. In NaCl solutions, pitting potentials for the alloys were more negative than for aluminium, indicating an increase in their susceptibility to localized corrosion. Moreover, annealed and cold-rolled alloys presented more negative pitting and repassivation potentials than those submitted to age hardening with direct or interrupted quenching. In annealed and cold-rolled samples, pit nucleation and propagation takes place in the zones where MgZn 2 is accumulated. In the case of the age-hardened alloys, a double pitting behaviour is observed, the first one in the magnesium and zinc enriched regions and the second in the matrix. While the cold water quenched alloy is susceptible to stress corrosion craking, the alloy submitted to the interrupted quenching process is less susceptible to intergranular attack. The sulphate ion shifts the pitting potential of aluminium and the alloys by chloride towards more positive values because it impedes local accumulations of the latter. © 1992 Chapman & Hall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The literature dealing with the electrochemical corrosion characteristics of unalloyed copper in aqueous chloride media is examined. The enormous quantity of polarisation and mixed/corrosion potential data that has been made available in the literature over the last 50 years has been compiled and discussed in a comprehensive review. For a wide range of electrode geometries, the importance of the chloride ion and the mass transport of anodic corrosion products on the corrosion behaviour of copper are made clear for both freshly polished and 'filmed' surfaces. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Zn-CeO 2 composite coatings through electrodeposition technique were successfully fabricated on mild steel substrate. As a comparison pure zinc coating was also prepared. The concentration of CeO 2 nanoparticles was varied in the electrolytic bath and the composites were electrodeposited both in the presence and absence of cetyltriammonium bromide (CTAB). The performance of the CeO 2 nanoparticles towards the deposition, crystal structure, texture, surface morphology and electrochemical corrosion behavior was studied. For characterizations of the electrodeposits, the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) were used. Both the additives ceria and surfactant polarize the reduction processes and thus influence the deposition process, surface nature and the electrochemical properties. The electrochemical experiments like potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies carried out in 3.5 wt. NaCl solution explicit higher corrosion resistance by CeO 2 incorporated coating in the presence of surfactant. © 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The primary objective of the present work was to study the electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti, fabricated independently in various electrolyte solutions consisting of anions such as phosphate (PO43-), borate (B4O72-), citrate (C6H5O73-) and silicate (SiO32-). Further the role of anions on the structural, morphological and compositional properties of the fabricated films was studied. All the titania films were developed by micro-arc oxidation (MAO) technique for a fixed treatment time of 8 min under constant current mode. The surface morphology, elemental distribution, composition and structural characteristics of the films were assessed by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The thermodynamic and kinetic corrosion properties of the films were studied under simulated body fluid (SBF) conditions (pH 7.4 and 37 degrees C) by conducting chronopotentiometric and potentiodynamic polarization tests. Electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit modelling was carried out to analyse the frequency response and Mott-Schottky analysis was performed to study the semiconducting (electronic) properties of the films. Salt spray fog accelerated corrosion test was conducted for 168h as per ASTM B117 standard to corroborate the corrosion and semiconducting properties of the samples based on the visual examination. The XRD results showed that the transformation from the metastable anatase phase to the thermodynamically stable rutile phase and the crystalline growth of the respective phases were strongly influenced by the addition of anions. The SEM-EDS results demonstrated that the phosphorous (P) content in the films varied from 2.4 at% to 5.0 at% indicating that the amount of P in the films could be modified by adding an appropriate electrolyte additive. The electrochemical corrosion test results showed that the film fabricated in citrate (C6H5O73-) containing electrolyte is thermodynamically and kinetically more stable compared to that of all the others. The results of the Mott-Schottky analysis indicated that all the fabricated films showed an n-type semiconducting behaviour and the film developed in citrate (C6H5O73-) containing electrolyte exhibited the lowest donor concentration and the most negative flat band potential that contributed to its highest corrosion resistance in SBF solution. The results of the salt spray accelerated corrosion tests were in agreement with those obtained from the electrochemical and Mott-Schottky analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

CrN films on a bipolar plate in polymer electrolyte membrane fuel cells have several advantages owing to their excellent corrosion resistance and mechanical properties. Three CrN samples deposited at various radio frequency (RF) powers by RF magnetron sputtering were evaluated under potentiodynamic, potentiostatic and electrochemical impedance spectroscopy conditions. The electrochemical impedance spectroscopy data were monitored for 168 h in a corrosive environment at 70 °C to determine the coating performance at +600 mVSCE under simulated cathodic conditions in a polymer electrolyte membrane fuel cell. The electrochemical behavior of the coatings increased with decreasing RF power. CrN films on the AISI 316 stainless steel substrate showed high protective efficiency and charge transfer resistance, i.e. increasing corrosion resistance with decreasing RF power. X-ray diffraction confirmed the formation of a CrN(200) preferred orientation at low RF power.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A theoretical analysis on the electrochemical noise resistance is carried out based on basic electrochemical corrosion theory. It is proven that the noise resistance is equivalent to the polarisation resistance and is in fact a special form of linear polarisation resistance, namely statistical linear polarisation resistance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Praseodymium 4-hydroxycinnamate (Pr(4OHCin)3) was investigated as a novel corrosion inhibitor for steel in NaCl solutions, and found to be effective at inhibiting corrosion in both CO2-containing and naturally-aerated systems. Surface analysis results suggest that the corrosion inhibition ability of Pr(4OHCin)3 in the naturally-aerated corrosion system could be attributed to the formation of a continuous protective film. For the CO2-containing system, the corrosion inhibition efficiency of Pr(4OHCin)3 was predominantly because of formation of protective inhibiting deposits at the active electrochemical corrosion sites, in addition to a thinner surface film deposit. © 2013.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A series of rare earth 4-hydroxycinnamate compounds including Ce(4OHCin)3, La(4OHCin)3, and Pr(4OHCin)3 has been synthesized and evaluated as novel inhibitors for carbon dioxide corrosion of steel in CO2-saturated sodium chloride solutions. Electrochemical measurements and surface analysis have shown that these REM(4OHCin)3 compounds effectively inhibited CO2 corrosion by forming protective inhibiting deposits that shut down the active electrochemical corrosion sites on the steel surface. Inhibition efficiency was found to increase in the order Ce(4OHCin)3 < La(4OHCin)3 < Pr(4OHCin)3 and with increase in inhibitor concentration up to 0.63 mM. Detailed insights into corrosion inhibition mechanism of these compounds in carbon dioxide environment are also provided.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

© 2015 by Nace International. This paper presents new experimental evidences on the capability of a novel electrochemical corrosion monitoring sensor, which was recently conceived, for measuring localized corrosion under disbonded pipeline coatings. The sensor's design includes an artificial crevice for simulating the conditions developed under disbonded coatings and an electrode array for measuring current density distribution over its surface. The sensor capabilities were further evaluated by studying the dependency of corrosion patterns and current density distribution on the Cathodic Protection (CP) potential applied upon immersion in an aqueous environment. At the less negative CP potential, a good correlation was found between the inhomogeneous corrosion distribution under the disbonded coating as measured by the sensor and actual metal loss and corrosion attack observed on its surface at the end of the test. At more negative CP potentials no corrosion was detected or observed on the sensor's surface. In addition, characteristic changes in the cathodic current distribution at different CP potentials illustrated the possibility of employing the sensor to obtain valuable feedback on the performance of a given CP setup, without requiring its interruption or compensation of IR-drops. Furthermore, the sensor's capability to detect some of the effects of overprotection were shown at the most negative CP potential applied.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrochemical corrosion measurements of AISI H13 steel treated by Pill process in 3.5% (wt) NaCl solution were investigated. So far the corrosion behavior of AISI H 13 steel by Pill has not been studied. The electrochemical results are correlated with the surface morphology, nitrogen content and hardness of the nitride layer. Ion implantation of nitrogen into H 13 steel was carried out by Pill technique. SEM examination revealed a generalized corrosion and porosity over all analyzed sample surfaces. Penetration of nitrogen reaching more than 20 gm was achieved at 450 degrees C and hardness as high as 1340 HV (factor of 2.7 enhancement over standard tempered and annealed H 13) was reached by a high power, 9 h Pill treatment. The corrosion behavior of the samples was studied by potentiodynamic polarization method. The noblest corrosion behavior was observed for the samples treated by PIII at 450 degrees C, during 9 h. Anodic branches of polarization curves of PIII processed samples show a passive region associated with the formation of a protective film. The passive region current density of PIII treated H13 samples (3.5 x 10(-6) A/cm(2)) is about 270 times lower than the one of untreated specimens, which demonstrates the higher corrosion resistance for the Pill treated H 13 samples. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electrochemical corrosion and passivation of Al-5Zn-1.7Mg-0.23Cu-0.053Nb alloys, submitted to different heat treatments (cold-rolled, annealed, quenched and aged, and quenched in two steps and aged), in sulphate-containing chloride solutions, has been studied by means of cyclic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The cyclic polarization curves showed that sulphate addition to the chloride solution produced a poor reproducible shift of the breakdown potential to more positive potentials. The repassivation potentials, much more reproducible, and practically separating the passive from the pitting potential region, were slightly displaced in the negative direction with that addition. When the alloys were potentiodynamically polarized in the passive potential region, sulphate was incorporated in the oxide film, thus precluding chloride ingress. In addition, Zn depletion was favoured, whereas Mg losses were avoided. Different equivalent circuits corresponding to different alloys and potentials in the passive and pitting regions were employed to account for the electrochemical processes taking place in each condition. This work shows that sulphate makes these alloys more sensitive to corrosion, increasing the fracture properties of the surface layer and favouring the pitting attack over greater areas than chloride alone. (C) 2002 Elsevier B.V. Ltd. All rights reserved.