225 resultados para electrocardiogram
Resumo:
Trials on implantable cardioverter-defibrillators (ICD) for patients after acute myocardial infarction (AMI) have highlighted the need for risk assessment of arrhythmic events (AE). The aim of this study was to evaluate risk predictors based on a novel approach of interpreting signal-averaged electrocardiogram (SAECG) and ejection fraction (EF).
Resumo:
BACKGROUND: Left anterior hemiblock (LAHB) is the most frequent conduction abnormality, but its impact on the diagnostic accuracy of the exercise ECG has not been studied. The aim of our study was to determine the diagnostic accuracy of ST depression for predicting ischaemia in the presence of LAHB. PATIENTS: Consecutive patients with known or suspected coronary heart disease undergoing exercise ECG and 99mTc-sestamibi single photon emission computed tomography (SPECT) were included in the analysis. Patients with left bundle branch block, with changes in QRS morphology related to myocardial infarction, and patients who had undergone pharmacological stress testing were excluded. RESULTS: Of 1532 patients assessed, 567 patients qualified for the analysis. In 69 patients with LAHB, ECG stress testing had lower sensitivity (38% vs 86%) and lower negative predictive value (82% vs 92%) than in patients with normal baseline ECG. The reduction of sensitivity appeared to be similar in patients with isolated LAHB (n=43), in patients with right bundle branch block (n=39), and with bifascicular block (n=26). In contrast, the positive predictive value of the test was excellent. CONCLUSION: The diagnostic accuracy of the exercise ECG for prediction of ischaemia is reduced in patients with LAHB.
Resumo:
BACKGROUND Unless effective preventive strategies are implemented, aging of the population will result in a significant worsening of the heart failure (HF) epidemic. Few data exist on whether baseline electrocardiographic (ECG) abnormalities can refine risk prediction for HF. METHODS We examined a prospective cohort of 2,915 participants aged 70 to 79 years without preexisting HF, enrolled between April 1997 and June 1998 in the Health, Aging, and Body Composition (Health ABC) study. Minnesota Code was used to define major and minor ECG abnormalities at baseline and at year 4 follow-up. Using Cox models, we assessed (1) the association between ECG abnormalities and incident HF and (2) the incremental value of adding ECG to the Health ABC HF Risk Score using the net reclassification index. RESULTS At baseline, 380 participants (13.0%) had minor, and 620 (21.3%) had major ECG abnormalities. During a median follow-up of 11.4 years, 485 participants (16.6%) developed incident HF. After adjusting for the Health ABC HF Risk Score variables, the hazard ratio (HR) was 1.27 (95% CI 0.96-1.68) for minor and 1.99 (95% CI 1.61-2.44) for major ECG abnormalities. At year 4, 263 participants developed new and 549 had persistent abnormalities; both were associated with increased subsequent HF risk (HR 1.94, 95% CI 1.38-2.72 for new and HR 2.35, 95% CI 1.82-3.02 for persistent ECG abnormalities). Baseline ECG correctly reclassified 10.5% of patients with HF events, 0.8% of those without HF events, and 1.4% of the overall population. The net reclassification index across the Health ABC HF risk categories was 0.11 (95% CI 0.03-0.19). CONCLUSIONS Among older adults, baseline and new ECG abnormalities are independently associated with increased risk of HF. The contribution of ECG screening for targeted prevention of HF should be evaluated in clinical trials.
Resumo:
Background. Cardiac tamponade can occur when a large amount of fluid, gas, singly or in combination, accumulating within the pericardium, compresses the heart causing circulatory compromise. Although previous investigators have found the 12-lead ECG to have a poor predictive value in diagnosing cardiac tamponade, very few studies have evaluated it as a follow up tool for ruling in or ruling out tamponade in patients with previously diagnosed malignant pericardial effusions. ^ Methods. 127 patients with malignant pericardial effusions at the MD Anderson Cancer Center were included in this retrospective study. While 83 of these patients had a cardiac tamponade diagnosed by echocardiographic criteria (Gold standard), 44 did not. We computed the sensitivity (Se), specificity (Sp), positive (PPV) and negative predictive values (NPV) for individual and combinations of ECG abnormalities. Individual ECG abnormalities were also entered singly into a univariate logistic regression model to predict tamponade. ^ Results. For patients with effusions of all sizes, electrical alternans had a Se, Sp, PPV and NPV of 22.61%, 97.61%, 95% and 39.25% respectively. These parameters for low voltage complexes were 55.95%, 74.44%, 81.03%, 46.37% respectively. The presence of all three ECG abnormalities had a Se = 8.33%, Sp = 100%, PPV = 100% and NPV = 35.83% while the presence of at least one of the three ECG abnormalities had a Se = 89.28%, Sp = 46.51%, PPV = 76.53%, NPV = 68.96%. For patients with effusions of all sizes electrical alternans had an OR of 12.28 (1.58–95.17, p = 0.016), while the presence of at least one ECG abnormality had an OR of 7.25 (2.9–18.1, p = 0.000) in predicting tamponade. ^ Conclusions. Although individual ECG abnormalities had low sensitivities, specificities, NPVs and PPVs with the exception of electrical alternans, the presence of at least one of the three ECG abnormalities had a high sensitivity in diagnosing cardiac tamponade. This could point to its potential use as a screening test with a correspondingly high NPV to rule out a diagnosis of tamponade in patients with malignant pericardial effusions. This could save expensive echocardiographic assessments in patients with previously diagnosed pericardial effusions. ^
Resumo:
There has been much recent research into extracting useful diagnostic features from the electrocardiogram with numerous studies claiming impressive results. However, the robustness and consistency of the methods employed in these studies is rarely, if ever, mentioned. Hence, we propose two new methods; a biologically motivated time series derived from consecutive P-wave durations, and a mathematically motivated regularity measure. We investigate the robustness of these two methods when compared with current corresponding methods. We find that the new time series performs admirably as a compliment to the current method and the new regularity measure consistently outperforms the current measure in numerous tests on real and synthetic data.
Resumo:
The use of electrocardiogram as biometric has raised attention in the last decade and a wide variety of ECG features were explored to verify the feasibility of such a signal. In this work the authors aim to describe a simple template based approach to the electrocardiographic biometric identification using the morphology of individual's heartbeat. The developed algorithm was tested on different recordings made available in the Physionet public database Fantasia: two different sets of heartbeats were extracted from individual recordings one was used for the template building while the second for the tests. The performances of the algorithm are encouraging with a true acceptance rate of 99.4%, however, the procedure needs to be tested on different recordings of the same individual, or during the course of a whole day or physical activity. © 2013 IEEE.
Resumo:
Background: During last decade the use of ECG recordings in biometric recognition studies has increased. ECG characteristics made it suitable for subject identification: it is unique, present in all living individuals, and hard to forge. However, in spite of the great number of approaches found in literature, no agreement exists on the most appropriate methodology. This study aimed at providing a survey of the techniques used so far in ECG-based human identification. Specifically, a pattern recognition perspective is here proposed providing a unifying framework to appreciate previous studies and, hopefully, guide future research. Methods: We searched for papers on the subject from the earliest available date using relevant electronic databases (Medline, IEEEXplore, Scopus, and Web of Knowledge). The following terms were used in different combinations: electrocardiogram, ECG, human identification, biometric, authentication and individual variability. The electronic sources were last searched on 1st March 2015. In our selection we included published research on peer-reviewed journals, books chapters and conferences proceedings. The search was performed for English language documents. Results: 100 pertinent papers were found. Number of subjects involved in the journal studies ranges from 10 to 502, age from 16 to 86, male and female subjects are generally present. Number of analysed leads varies as well as the recording conditions. Identification performance differs widely as well as verification rate. Many studies refer to publicly available databases (Physionet ECG databases repository) while others rely on proprietary recordings making difficult them to compare. As a measure of overall accuracy we computed a weighted average of the identification rate and equal error rate in authentication scenarios. Identification rate resulted equal to 94.95 % while the equal error rate equal to 0.92 %. Conclusions: Biometric recognition is a mature field of research. Nevertheless, the use of physiological signals features, such as the ECG traits, needs further improvements. ECG features have the potential to be used in daily activities such as access control and patient handling as well as in wearable electronics applications. However, some barriers still limit its growth. Further analysis should be addressed on the use of single lead recordings and the study of features which are not dependent on the recording sites (e.g. fingers, hand palms). Moreover, it is expected that new techniques will be developed using fiducials and non-fiducial based features in order to catch the best of both approaches. ECG recognition in pathological subjects is also worth of additional investigations.
Resumo:
BACKGROUND: Terrestrial Trunked Radio (TETRA) is a telecommunications system widely used by police and emergency services around the world. The Stewart Report on mobile telephony and health raised questions about possible health effects associated with TETRA signals. This study investigates possible effects of TETRA signals on the electroencephalogram and electrocardiogram in human volunteers. METHODS: Blinded randomized provocation study with a standardized TETRA signal or sham exposure. In the first of two experiments, police officers had a TETRA set placed first against the left temple and then the upper-left quadrant of the chest and the electroencephalogram was recorded during rest and active cognitive processing. In the second experiment, volunteers were subject to chest exposure of TETRA whilst their electroencephalogram and heart rate variability derived from the electrocardiogram were recorded. RESULTS: In the first experiment, we found that exposure to TETRA had consistent neurophysiological effects on the electroencephalogram, but only during chest exposure, in a pattern suggestive of vagal nerve stimulation. In the second experiment, we observed changes in heart rate variability during exposure to TETRA but the electroencephalogram effects were not replicated. CONCLUSIONS: Observed effects of exposure to TETRA signals on the electroencephalogram (first experiment) and electrocardiogram are consistent with vagal nerve stimulation in the chest by TETRA. However given the small effect on heart rate variability and the lack of consistency on the electroencephalogram, it seems unlikely that this will have a significant impact on health. Long-term monitoring of the health of the police force in relation to TETRA use is on-going.
Resumo:
This dissertation presents a unique research opportunity by using recordings which provide electrocardiogram (ECG) plus a reference breathing signal (RBS). ECG derived breathing (EDR) is measured and correlated against RBS. Standard deviations of multiresolution wavelet analysis coefficients (SDMW) are obtained from heart rate and classified using RBS. Prior works by others used select patients for sleep apnea scoring with EDR but no RBS. Another prior work classified select heart disease patients with SDMW but no RBS. This study used randomly chosen sleep disorder patient recordings; central and obstructive apneas, with and without heart disease.^ Implementation required creating an application because existing systems were limited in power and scope. A review survey was created to choose a development environment. The survey is presented as a learning tool and teaching resource. Development objectives were rapid development using limited resources (manpower and money). Open Source resources were used exclusively for implementation. ^ Results show: (1) Three groups of patients exist in the study. Grouping RBS correlations shows a response with either ECG interval or amplitude variation. A third group exists where neither ECG intervals nor amplitude variation correlate with breathing. (2) Previous work done by other groups analyzed SDMW. Similar results were found in this study but some subjects had higher SDMW, attributed to a large number of apneas, arousals and/or disconnects. SDMW does not need RBS to show apneic conditions exist within ECG recordings. (3) Results in this study support the assertion that autonomic nervous system variation was measured with SDMW. Measurements using RBS are not corrupted due to breathing even though respiration overlaps the same frequency band.^ Overall, this work becomes an Open Source resource which can be reused, modified and/or expanded. It might fast track additional research. In the future the system could also be used for public domain data. Prerecorded data exist in similar formats in public databases which could provide additional research opportunities. ^
Resumo:
The use of electrocardiogram nowadays, is very important in diagnosis of heart disease. The emergent increase of portable technology provides medica] monitoring of vital signs allowing freedom ofmovement and watching during normal activity of the patient. In this shidy, it is described the development of a prototype of an ambulatory cardiac monitoring system using 3 leads. The systems consists on conversion of an analog signal, having been previously processed and conditioned, into digital ECG signal and after processed with a microcontroller (MCU). The heartbeat rate can be observed in an LCD display. The LCD display is also used as the interface during the setup process. Ali digital data stream can be stored on a SD memory card llowing the ECG signa] to be accessed later on a PC.
Resumo:
Purpose: Research suggests that nurses and nursing students lack competence in basic electrocardiogram (ECG) interpretation. Self-efficacy is considered to be paramount in the development of one's competence. The aim of this study was to develop and psychometrically evaluate a scale to assess self-efficacy of nursing students in basic ECG interpretation. Materials and methods: Observational cross-sectional study with a convenience sample of 293 nursing students. The basic ECG interpretation self-efficacy scale (ECG-SES) was developed and psychometrically tested in terms of reliability (internal consistency and temporal stability) and validity (content, criterion and construct). The ECG-SES’ internal consistency was explored by calculating the Cronbach's alpha coefficient (α); its temporal stability was investigated by calculating the Pearson correlation coefficient (r) between the participants’ results on a test–retest separated by a 4-week interval. The content validity index of the items (I-CVI) and the scale (S-CVI) was calculated based on the reviews of a panel of 16 experts. Criterion validity was explored by correlating the participants’ results on the ECG-SES with their results on the New General Self-Efficacy Scale (NGSE). 1 Construct validity was investigated by performing Principal Component Analysis (PCA) and known-group analysis. Results: The excellent reliability of the ECG-SES was evidenced by its internal consistency (α = 0.98) and its temporal stability at the 4-week re-test (r = 0.81; p < 0.01). The ECG-SES’ content validity was also excellent (all items’ I-CVI = 0.94–1; S-CVI = 0.99). A strong, significant correlation between the NGSE and the ECG-SES (r = 0.70; p < 0.01) showed its criterion validity. Corroborating the ECG-SES’ construct validity, PCA revealed that all its items loaded on a single factor that explained 74.6% of the total variance found. Furthermore, known-groups analysis showed the ECG-SES’ ability to detect expected differences in self-efficacy between groups with different training experiences (p < 0.01). Conclusion: The ECG-SES showed excellent psychometric properties for measuring the self-efficacy of nursing students in basic ECG interpretation.
Resumo:
Dissertação de Mestrado Integrado em Medicina Veterinária