949 resultados para electrical energy recovery
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Hearings held Dec. 18, 1969-
Resumo:
Many local authorities (LAs) are currently working to reduce both greenhouse gas emissions and the amount of municipal solid waste (MSW) sent to landfill. The recovery of energy from waste (EfW) can assist in meeting both of these objectives. The choice of an EfW policy combines spatial and non-spatial decisions which may be handled using Multi-Criteria Analysis (MCA) and Geographic Information Systems (GIS). This paper addresses the impact of transporting MSW to EfW facilities, analysed as part of a larger decision support system designed to make an overall policy assessment of centralised (large-scale) and distributed (local-scale) approaches. Custom-written ArcMap extensions are used to compare centralised versus distributed approaches, using shortest-path routing based on expected road speed. Results are intersected with 1-kilometre grids and census geographies for meaningful maps of cumulative impact. Case studies are described for two counties in the United Kingdom (UK); Cornwall and Warwickshire. For both case study areas, centralised scenarios generate more traffic, fuel costs and emitted carbon per tonne of MSW processed.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
This research project has developed a novel decision support system using Geographical Information Systems and Multi Criteria Decision Analysis and used it to develop and evaluate energy-from-waste policy options. The system was validated by applying it to the UK administrative areas of Cornwall and Warwickshire. Different strategies have been defined by the size and number of the facilities, as well as the technology chosen. Using sensitivity on the results from the decision support system, it was found that key decision criteria included those affected by cost, energy efficiency, transport impacts and air/dioxin emissions. The conclusions of this work are that distributed small-scale energy-from-waste facilities score most highly overall and that scale is more important than technology design in determining overall policy impact. This project makes its primary contribution to energy-from-waste planning by its development of a Decision Support System that can be used to assist waste disposal authorities to identify preferred energy-from-waste options that have been tailored specifically to the socio-geographic characteristics of their jurisdictional areas. The project also highlights the potential of energy-from-waste policies that are seldom given enough attention to in the UK, namely those of a smaller-scale and distributed nature that often have technology designed specifically to cater for this market.
Resumo:
In this paper a Hierarchical Analytical Network Process (HANP) model is demonstrated for evaluating alternative technologies for generating electricity from MSW in India. The technological alternatives and evaluation criteria for the HANP study are characterised by reviewing the literature and consulting experts in the field of waste management. Technologies reviewed in the context of India include landfill, anaerobic digestion, incineration, pelletisation and gasification. To investigate the sensitivity of the result, we examine variations in expert opinions and carry out an Analytical Hierarchy Process (AHP) analysis for comparison. We find that anaerobic digestion is the preferred technology for generating electricity from MSW in India. Gasification is indicated as the preferred technology in an AHP model due to the exclusion of criteria dependencies and in an HANP analysis when placing a high priority on net output and retention time. We conclude that HANP successfully provides a structured framework for recommending which technologies to pursue in India, and the adoption of such tools is critical at a time when key investments in infrastructure are being made. Therefore the presented methodology is thought to have a wider potential for investors, policy makers, researchers and plant developers in India and elsewhere. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The use of the pyrolysis process to obtain valuable products from biomass is amongst the technologies being investigated as a source for renewable energy. The pyrolysis process yields products such as biochar, bio-oil and non condensable gases. The main objective of this project is to increase energy recovery from sewage sludge by utilising the intermediate pyrolysis process. The intermediate pyrolysis has a residence time ranging from 5 to 10 minutes. The main product yields from sewage sludge pyrolysis are 50 wt% biochar, 40 wt% bio-oil and 10 wt% non condensable gases. The project was carried out on a pilot plant scale reactor with a load capacity of 20 kg/h. This enabled a high yield of biochar and bio-oil. The characterisation of the products indicated that the organic phase of the bio-oil had good fuel properties such as having high energy content of 39 MJ/kg, low acid number of 21.5, high flash point of 150 and viscosity of 35 cSt. An increase in pyrolysis experiments enabled large quantities of pyrolysis oil production. Co-pyrolysis of sewage sludge was carried out on laboratory scale with mixed wood, rapeseed and straw. It found that there was an increase in bio-oil quantity with rapeseed while co-pyrolysis with wood helped to mask the smell of the sludge pyrolysis oil. Engine test were successfully carried out in an old Lister engine with pyrolysis oil fractions of 30% and 50% blended with biodiesel. This indicates that these pyrolysis oil fractions can be used in similar engine types without any problems however long term effects in ordinary engines are unknown. An economic evaluation was carried out about the implementation of the intermediate pyrolysis process for electricity production in a CHP using the pyrolysis oil. The prices of electricity per kWh were found to be very high.
Resumo:
GEA Consulting Engineers, acting as the design engineers, was hired by the owner, East Village 207 Residential LLC2 for energy modeling for compliance with LEED NC V3 -- This report details the results of the energy simulation done with the 100% construction documents -- This report only refers to entities within the LEED3 project boundary -- The project consists of a new eight-story high-end residential condominium building with 81 units, as shown in illustration 1, and approximately 117,905 GSF, equivalent to 10,953.73 m2, is located at 211 E 13th Street in New York, NY -- The residential portion of the building will function 24-7 -- The design goal is to utilize energy efficient measures to reduce electrical energy use and aims to achieve LEED certification -- LEED EA Credit 14 requires a building to demonstrate a percentage improvement in the proposed building performance compared with the baseline building -- The Credit rewards 1 point for achieving 12% reduction in energy costs -- Additionally, the Credit rewards another point for each subsequent reduction of 2% in the building’s energy cost
Resumo:
Työssä tarkastellaan sähköisiä energian talteenottomahdollisuuksia liikkuvissa työkoneissa. Työssä esitetään kolme erityyppistä liikkuvaan työkoneeseen soveltuvaa sähköisen energian talteenottojärjestelmää sekä mitoitetaan hybridikäyttö kahdelle erityyppiselle työkonesovellukselle kuormituskäyrien perusteella. Lisäksi työssä lasketaan hybridijärjestelmää käyttämällä saavutettava energiansäästö nykyiseen käyttöön verrattuna.