988 resultados para electrical circuit
Resumo:
In this paper fault detection and isolation (FDI) schemes are applied in the context of the surveillance of emerging faults in an electrical circuit. The FDI problem is studied on a noisy nonlinear circuit, where both abrupt and incipient faults in the voltage source are considered. A rigorous analysis of fault detectability precedes the application of the fault detection (FD) scheme; then, the fault isolation (FI) phase is accomplished with two alternative FI approaches, proposed as new extensions of that FD approach. Numerical simulations illustrate the applicability of the mentioned schemes.
Resumo:
Industrial transformer is one of the most critical assets in the power and heavy industry. Failures of transformers can cause enormous losses. The poor joints of the electrical circuit on transformers can cause overheating and results in stress concentration on the structure which is the major cause of catastrophic failure. Few researches have been focused on the mechanical properties of industrial transformers under overheating thermal conditions. In this paper, both mechanical and thermal properties of industrial transformers are jointly investigated using Finite Element Analysis (FEA). Dynamic response analysis is conducted on a modified transformer FEA model, and the computational results are compared with experimental results from literature to validate this simulation model. Based on the FEA model, thermal stress is calculated under different temperature conditions. These analysis results can provide insights to the understanding of the failure of transformers due to overheating, therefore are significant to assess winding fault, especially to the manufacturing and maintenance of large transformers.
Resumo:
The performance parameters e.g. non-linear coefficient (α) and breakdown electric field (Eb1mA/cm2) of ZnO based ceramic varistors were found to improve after the addition of 10 mol% MgO. The improvement in the varistor properties is examined by ac impedance spectroscopy technique in the frequency range (1 Hz–10 MHz) between temperature 25–250°C and understood in terms of differing contributions from the equivalent electrical circuit elements.
Resumo:
Among various MEMS sensors, a rate gyroscope is one of the most complex sensors from the design point of view. The gyro normally consists of a proof mass suspended by an elaborate assembly of beams that allow the system to vibrate in two transverse modes. The structure is normally analysed and designed using commercial FEM packages such as ANSYS or MEMS specific commercial tools such as Coventor or Intellisuite. In either case, the complexity in analysis rises manyfolds when one considers the etch hole topography and the associated fluid flow calculation for damping. In most cases, the FEM analysis becomes prohibitive and one resorts to equivalent electrical circuit simulations using tools like SABER in Coventor. Here, we present a simplified lumped parameter model of the tuning fork gyro and show how easily it can be implemented using a generic tool like SIMULINK. The results obtained are compared with those obtained from more elaborate and intense simulations in Coventor. The comparison shows that lumped parameter SIMULINK model gives equally good results with fractional effort in modelling and computation. Next, the performance of a symmetric and decoupled vibratory gyroscope structure is also evaluated using this approach and a few modifications are made in this design to enhance the sensitivity of the device.
Resumo:
Electro-oxidation of methanol was studied on carbon-supported Pt---Sn/C electrodes in silcotungstic acid (SiWA) at various concentrations. The porous-carbon electrodes employing Pt---Sn/C catalyst have been characterized using chemical analyses, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) in conjunction with electrochemistry. The presence of Pt---Sn and Pt3Sn alloys along with Pt and SnO2 phases in the catalyst were identified by XRD. XPS analysis showed a lower amount of PtO species in the Pt---Sn/C catalyst with respect to the corresponding Pt/C sample. From the steady-state galvanostatic polarization data on Pt---Sn/C electrodes in SiWA, it is inferred that a one-electron process is the rate determining step. The performance of the electrodes in 0.084 M SiWA was better than in 2.5 M H2SO4 under similar conditions up to load currents of about 100 mA cm−2 indicating the promoting behaviour of the electrolyte. At currents larger than 100 mA cm−2, the performance of the electrodes in 0.084 SiWA was poorer than that in 2.5 M H2SO4 mainly due to the dominance of mass polarization in the former owing to the large size of keggin units associated with the structure of SiWA. This aspect was supported by cyclic voltammetry and ac impedance studies on Pt---Sn/C electrodes. Simulation of the electrochemical impedance response for the oxidation of methanol in SiWA was carried out using the equivalent electrical circuit model.
Resumo:
Electro-oxidation of methanol was studied on carbon-supported Pt-Sn/C electrodes in silcotungstic acid (SiWA) at various concentrations. The porous-carbon electrodes employing Pt-Sn/C catalyst have been characterized using chemical analyses, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) in conjunction with electrochemistry. The presence of Pt-Sn and Pt3Sn alloys along with Pt and SnO2 phases in the catalyst were identified by XRD. XPS analysis showed a lower amount of PtO species in the Pt-Sn/C catalyst with respect to the corresponding Pt/C sample. From the steady-state galvanostatic polarization data on Pt-Sn/C electrodes in SiWA, it is inferred that a one-electron process is the rate determining step. The performance of the electrodes in 0.084 M SiWA was better than in 2.5 M H2SO4 under similar conditions up to load currents of about 100 mA cm-2 indicating the promoting behaviour of the electrolyte. At currents larger than 100 mA cm-2, the performance of the electrodes in 0.084 SiWA was poorer than that in 2.5M H2SO4 mainly due to the dominance of mass polarization in the former owing to the large size of Keggin units associated with the structure of SiWA. This aspect was supported by cyclic voltammetry and ac impedance studies on Pt-Sn/C electrodes. Simulation of the electrochemical impedance response for the oxidation of methanol in SiWA was carried out using the equivalent electrical circuit model.
Resumo:
This paper describes the design, fabrication and testing of a moving magnet type linear motor of dual piston configuration for a pulse tube cryocooler for ground applications. Eight radially magnetized segmented magnets were used to form one set of a magnet ring. Four magnet rings of such type were constructed, in which one pair of rings has north-pole on its outer diameter and south-pole on inner diameter, while the other pair is it's complementary. The magnets were mounted with opposite poles together on the magnet holder with an axial moving shaft having a piston mounted on both ends of the shaft. The shaft movement was restricted to the axial direction by using C-clamp type flexures, mounted on both sides of the shaft. The force requirement for driving the compressor was calculated based on which the electrical circuit of motor is designed by proper selection of wire gauge and Ampere-turns. The flexure spring force estimation was done through simulation using ANSYS 11.0 and was verified experimentally; while the magnet spring force was determined experimentally. The motor with mounted piston was tested using a variable voltage and variable frequency power supply capable of driving 140 watts of load.
Resumo:
A computationally efficient Li-ion battery model has been proposed in this paper. The battery model utilizes the features of both analytical and electrical circuit modeling techniques. The model is simple as it does not involve a look-up table technique and fast as it does not include a polynomial function during computation. The internal voltage of the battery is modeled as a linear function of the state-of-charge of the battery. The internal resistance is experimentally determined and the optimal value of resistance is considered for modeling. Experimental and simulated data are compared to validate the accuracy of the model.
Resumo:
Ammonia plays an important role in our daily lives and hence its quantitative and qualitative sensing has become necessary. Bulk structure of carbon nanotubes (CNTs) has been employed to detect the gas concentration of 10 ppm. Hydrophobic CNTs were turned to hydrophilic via the application of a ramp electric field that allowed confinement of a controlled amount of water inside CNT microstructure. These samples were then also used to detect different gases. A comparative study has been performed for sensing three reducing gases, namely, ammonia, sulphur-di-oxide, and hydrogen sulphide to elaborate the selectivity of the sensor. A considerable structural bending in the bulk CNT was observed on evaporation of the confined water, which can be accounted to the zipping of individual nanotubes. However, the rate of the stress induced on these bulk microstructures increased on the exposure of ammonia due to the change in the surface tension of the confined solvent. A prototype of an alarm system has been developed to illustrate sensing concept, wherein the generated stress in the bulk CNT induces a reversible loss in electrical contact that changes the equivalent resistance of the electrical circuit upon exposure to the gas. (C) 2015 AIP Publishing LLC.
Resumo:
Os aços inoxidáveis correspondem a aços com diferenças de composição e microestrutura. Desta forma, o comportamento em corrosão é consequentemente diferente. Para avaliar este aspecto, aços com PREN variando de aproximadamente 11 a 35% foram analisados por curvas de polarização. A motivação principal desse trabalho foi avaliar o comportamento de cada aço inoxidável com uso de diferentes técnicas (impedância eletroquímica e circuitos elétricos equivalentes) e também na nova técnica de mapas de impedância, da influência do PREN na corrosão em meio de 3,5% NaCl a 25C. A partir dessas curvas, os potenciais de pites e de densidade de corrente de corrosão foram obtidos. Além disto, foram empregados mapas de diagrama de impedância eletroquímica para visualizar o efeito do potencial aplicado, desde o potencial catódico até além do potencial de pite desses aços. Pôde-se observar que o módulo de impedância se reduz abruptamente quando surge o pite. Ademais, há uma alteração do ângulo característico para frequências da ordem de 1 kHz. Para dois aços inoxidáveis, UNS S30400 e UNS S31600, foram utilizados os diagramas de impedância obtidos dos mapas e estimados a evolução dos parâmetros relacionados a um circuito elétrico equivalente para potenciais aplicados.
Resumo:
The object of this paper is to give a complete treatment of the realizability of positive-real biquadratic impedance functions by six-element series-parallel networks comprising resistors, capacitors, and inductors. This question was studied but not fully resolved in the classical electrical circuit literature. Renewed interest in this question arises in the synthesis of passive mechanical impedances. Recent work by the authors has introduced the concept of a regular positive-real functions. It was shown that five-element networks are capable of realizing all regular and some (but not all) nonregular biquadratic positive-real functions. Accordingly, the focus of this paper is on the realizability of nonregular biquadratics. It will be shown that the only six-element series-parallel networks which are capable of realizing nonregular biquadratic impedances are those with three reactive elements or four reactive elements. We identify a set of networks that can realize all the nonregular biquadratic functions for each of the two cases. The realizability conditions for the networks are expressed in terms of a canonical form for biquadratics. The nonregular realizable region for each of the networks is explicitly characterized. © 2004-2012 IEEE.
Resumo:
This report describes a program which automatically characterizes the behavior of any driven, nonlinear, electrical circuit. To do this, the program autonomously selects interesting input parameters, drives the circuit, measures its response, performs a set of numeric computations on the measured data, interprets the results, and decomposes the circuit's parameter space into regions of qualitatively distinct behavior. The output is a two-dimensional portrait summarizing the high-level, qualitative behavior of the circuit for every point in the graph, an accompanying textual explanation describing any interesting patterns observed in the diagram, and a symbolic description of the circuit's behavior which can be passed on to other programs for further analysis.
Resumo:
This report describes a system which maintains canonical expressions for designators under a set of equalities. Substitution is used to maintain all knowledge in terms of these canonical expressions. A partial order on designators, termed the better-name relation, is used in the choice of canonical expressions. It is shown that with an appropriate better-name relation an important engineering reasoning technique, propagation of constraints, can be implemented as a special case of this substitution process. Special purpose algebraic simplification procedures are embedded such that they interact effectively with the equality system. An electrical circuit analysis system is developed which relies upon constraint propagation and algebraic simplification as primary reasoning techniques. The reasoning is guided by a better-name relation in which referentially transparent terms are preferred to referentially opaque ones. Multiple description of subcircuits are shown to interact strongly with the reasoning mechanism.
Resumo:
Lee M.H., Qualitative Modelling of Linear Networks in ECAD Applications, Expert Update, Vol. 3, Num. 2, pp23-32, BCS SGES, Summer 2000. Qualitative modeling of linear networks in ecad applications (1999) by M Lee Venue: Pages 146?152 of: Proceedings 13th international workshop on qualitative reasoning, QR ?99
Resumo:
Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. OECB's incorporate short range optical interconnects, and are based on VCSEL (Vertical Cavity Surface Emitting Diode) and PD (Photo Diode) pairs, connected to each other via embedded waveguides in the OECB. The VCSEL device is flip-chip assembled onto an organic substrate with embedded optical waveguides. The performance of the VCSEL device is governed by the thermal, mechanical and optical characteristics of this assembly. During operation, the VCSEL device will heat up and the thermal change together with the CTE mismatch in the materials, will result in potential misalignment between the VCSEL apertures and the waveguide openings in the substrate. Any degree of misalignment will affect the optical performance of the package. This paper will present results from a highly coupled modelling analysis involving thermal, mechanical and optical models. The paper will also present results from an optimisation analysis based on Design of Experiments (DOE).