851 resultados para electric utility deregulation
Resumo:
Under the Illinois Public Utilities Act, the Department is required to assess, biennially, electricity demand and supply for three futures over the period 1989 - 2010.
Resumo:
Item 1005-C.
Resumo:
A probabilistic method is proposed to evaluate voltage quality of grid-connected photovoltaic (PV) power systems. The random behavior of solar irradiation is described in statistical terms and the resulting voltage fluctuation probability distribution is then derived. Reactive power capabilities of the PV generators are then analyzed and their operation under constant power factor mode is examined. By utilizing the reactive power capability of the PV-generators to the full, it is shown that network voltage quality can be greatly enhanced.
Resumo:
A hybrid energy storage system (HESS) consisting of battery and supercapacitor (SC) is proposed for use in a wind farm in order to achieve power dispatchability. In the designed scheme, the rate of charging/discharging powers of the battery is controlled while the faster wind power transients are diverted to the SC. This enhances the lifetime of the battery. Furthermore, by taking into consideration the random nature of the wind power, a statistical design method is developed to determine the capacities of the HESS needed to achieve specified confidence level in the power dispatch. The proposed approach is useful in the planning of the wind farm-HESS scheme and the coordination of the power flows between the battery and SC.
Resumo:
A power electronics-based buffer is examined in which through control of its PWM converters, the buffer-load combination is driven to operate under either constant power or constant impedance modes. A battery, incorporated within the buffer, provides the energy storage facility to facilitate the necessary power flow control. Real power demand from upstream supply is regulated under fault condition, and the possibility of voltage or network instability is reduced. The proposed buffer is also applied to a wind farm. It is shown that the buffer stabilizes the power contribution from the farm. Based on a battery cost-benefit analysis, a method is developed to determine the optimal level of the power supplied from the wind farm and the corresponding capacity of the battery storage system.
Resumo:
The electric utility business is an inherently dangerous area to work in with employees exposed to many potential hazards daily. One such hazard is an arc flash. An arc flash is a rapid release of energy, referred to as incident energy, caused by an electric arc. Due to the random nature and occurrence of an arc flash, one can only prepare and minimize the extent of harm to themself, other employees and damage to equipment due to such a violent event. Effective January 1, 2009 the National Electric Safety Code (NESC) requires that an arc-flash assessment be performed by companies whose employees work on or near energized equipment to determine the potential exposure to an electric arc. To comply with the NESC requirement, Minnesota Power’s (MP’s) current short circuit and relay coordination software package, ASPEN OneLinerTM and one of the first software packages to implement an arc-flash module, is used to conduct an arc-flash hazard analysis. At the same time, the package is benchmarked against equations provided in the IEEE Std. 1584-2002 and ultimately used to determine the incident energy levels on the MP transmission system. This report goes into the depth of the history of arc-flash hazards, analysis methods, both software and empirical derived equations, issues of concern with calculation methods and the work conducted at MP. This work also produced two offline software products to conduct and verify an offline arc-flash hazard analysis.
Resumo:
In the U.S., many electric utility companies are offering demand-side management (DSM) programs to their customers as ways to save money and energy. However, it is challenging to compare these programs between utility companies throughout the U.S. because of the variability of state energy policies. For example, some states in the U.S. have deregulated electricity markets and others do not. In addition, utility companies within a state differ depending on ownership and size. This study examines 12 utilities’ experiences with DSM programs and compares the programs’ annual energy savings results that the selected utilities reported to the Energy Information Administration (EIA). The 2009 EIA data suggests that DSM program effectiveness is not significantly affected by electricity market deregulation or utility ownership. However, DSM programs seem to generally be more effective when administered by utilities located in states with energy savings requirements and DSM program mandates.
Resumo:
This paper examines the implications of strategic rigidness for technology adoption behaviours among electric utilities. Such behaviours lead to heterogeneity in firm performance and consequently affect the electric utility industry. The paper's central aim is to identify and describe the implications of strategic rigidness for a utility firm's decision making in adopting newer renewable energy technologies. The findings indicate that not all utility firms are keen to adopt these new technologies, as these firms have traditionally been operating efficiently with a more conventional and mature technological arrangement that has become embedded in the organisational routine. Case studies of Iberdrola S.A. and Enel S.p.A. as major electric utilities are detailed to document mergers and acquisitions and technology adoption decisions. The results indicate that technology adoption behaviours vary widely across utility firms with different organisational learning processes and core capabilities.
Resumo:
The variation in the adoption of a technology as a major source of competitive advantage has been attributed to the wide-ranging strategic foresight and the integrative capability of a firm. These possible areas of competitive advantage can exist in the periphery of the firm's strategic vision and can get easily blurred as a result of rigidness and can permeate in the decision-making process of the firm. This article explores how electric utility firms with a renewable energy portfolio can become strategically rigid in terms of adoption of newer technologies. The reluctance or delay in the adoption of new technology can be characterized as strategic rigidness, brought upon as a result of a firm's core competence or core capability in the other, more conventional technology arrangement. This paper explores the implications of such rigidness on the performance of a firm and consequently on the energy eco-system. The paper substantiates the results by emphasizing the case of Iberdrola S.A., an incumbent firm as a wind energy developer and its adoption decision behavior. We illustrate that the very routines that create competitive advantage for firms in the electric utility industry are vulnerable as they might also develop as sources of competitive disadvantage, when firms confront environmental change and uncertainty.
Resumo:
"Submitted pursuant to: Section 8-405.1 of the Revised Public Utilities Act."
Resumo:
The concept of a substantive integrator is introduced as a method for integrated resource and environmental management as a means to assimilate different resource values at the operational or field level. A substantive integrator is a strategic management tool for integrating multiple uses into coprorate management regimes that traditionally manage for single values. Wildlife habitat management is presented as a substantive integrator for managing vegetation on electric utility power line corridors. A case study from northern British Columbia provides an example of wildlife habitat management as a means to integrate other resource values such as aesthetics, access and subsistence along British Columbia Hydro and Power Authority's transmission rights-of-way.