998 resultados para electric fish
Resumo:
This is the report from the Lune, Wyre and Furness Fisheries Advisory Committee meeting, which was held on the 15th January, 1979. It covers information on the proposed net limitation order and new fishery byelaws for the Rivers Lune and Wyre, the proposed byelaws for Skerton Weir, issues with the electric fish diversion screens for the Lune and the Wyre, and the monitoring of levels of radioactivity in migratory fish. The section on the report by the area fisheries officer on fishing activities includes river conditions and fishing for the Lune, Wyre and Furness and figures for migratory fish counted at Haverthwaite on the River Leven, Broadraine, Forge Weir and Skerton Weir on the River Lune and Duddon Hall. Also included is an update on Middleton Hatchery, fish disease, fish mortalities and net catch figures for 1978 of grilse, salmon and sea trout for the Lune, Kent, Leven and Duddon. The Fisheries Advisory Committee was part of the Regional Water Authorities, in this case the North West Water Authority. This preceded the Environment Agency which came into existence in 1996.
Resumo:
The main factors that influence the species distribution are related mainly with the dispersion capacity, behavior, presence of other species and to the factors physicist-chemistries. Had been evaluated ecological factors that affect the distribution of the genus Astyanax in Chapada dos Guimaraes headstreams, Cuiaba River basin, Mato Grosso, Brazil. Samples in 27 streams had been made in Chapada dos Guimaraes, and the fish had been collected through the method of electric fish, and the ambient data had been analyzed with one technique of called ordinance of Principal Components Analysis (PCA). 250 individuals had been collect, being 95 A. asuncionensis, 62 A. abramis, 36 A. lineatus and 57 individuals had been captured identified like A. scabripinnis (Jenyns, 1842) sensu Eigenmann, 1927. In relation the ambient characteristics, the variables gotten allowed two axes of the PCA, who explain 53,114 % of the variance of the seven variables analyzed. Axle 1, Main Component 1, explained 31,147 % and Axle 2, Main Component 2, explained 21,967 % of the variation of the ambient data. The formation of axle 1 was influenced positively by the depth and negative by the conductivity and pH. The formation of axle 2 was influenced positively by the Turbidity and negative to the Dissolved Oxygen. The ordinance of the species throughout for the axes corroborated for the understanding of the distribution of specimens.
Resumo:
Nucleolus organizer regions (NORs) were analysed in two related and geographically close populations of Eigenmannia sp.1 (Pisces, Gymnotoidei, Sternopygidae) using silver staining and fluorescence in situ hybridization (FISH). The two populations differed in their AS-NOR phenotypes, displaying fixed differences in the NOR-bearing chromosome pairs. FISH with rDNA probes showed that these differences were due to the location of rDNA cistrons. This finding, showing fixed NOR differences between two populations belonging to the same species in a connected river system, is highly significant in terms of evolutionary change, possibly indicating an initial step of genetic differentiation. This result also has important implications from the cytosystematic point of view, as NORs usually have a very constant karyotypic location in fish species and have been used as species-specific chromosome markers.
Resumo:
Gymnotus tiquie, new species, is described from the Rio Tiquie, a tributary of the Uaupes (Vaupes) in the upper Negro basin, Amazonas, Brazil. The new species was collected in non-floodplain (terra firme) streams, where it occurs sympatrically and syntopically with two geographically widespread congeners, the type species of the genus, G. carapo, and G. coropinae. The new species is diagnosed by a unique combination of morphometric, meristic, and osteological traits, and by a characteristic color pattern in which the dark oblique pigment bands, diverse in shape and design, are divided into band-pairs along the length of the body, in which the band-pairs are often recurved (dorsally concave), more variable, and often reticulated in the abdominal region, and in which the pale inter-bands meet at the dorsal midline along most of the length of the body. Gymnotus tiquie is a member of the G. pantherinus species group, with which it shares the presence of one (vs. two) pore in the dorsolateral portion of the preopercle (except in G. pantanal and G. anguillaris), needle-shaped (vs. conical or arrowhead-shaped) teeth on the dentary and premaxilla, and a slender body (BD 5.6-10.6% HL vs. deep 8.7-13.5%, except G. chaviro, G. curupira, G. varzea, G. chimarrao, G. maculosus, G. henni, and G. inaequilabiatus that also have a slender body). Gymnotus tiquie is most similar in overall appearance to G. cataniapo of the upper Orinoco. These two species share three unique features within the G. pantherinus group: dark band-pairs with wavy irregular margins along the length of the body, a long body cavity with 45 or more pre-caudal vertebrae, and a darkly pigmented membrane in the caudal region of the anal fin.
Resumo:
The electrosensory lateral line lobe (ELL) of the electric fish Apteronotus leptorhynchus is a layered medullary region receiving electroreceptor input that terminates on basal dendrites of interneurons and projection (pyramidal) cells. The molecular layer of the ELL contains two distinct glutamatergic feedback pathways that terminate on the proximal (ventral molecular layer, VML) and distal (dorsal molecular layer) apical dendrites of pyramidal cells. Western blot analysis with an antibody directed against mammalian Ca2+/calmodulin-dependent kinase 2, α subunit (CaMK2α) recognized a protein of identical size in the brain of A. leptorhynchus. Immunohistochemistry demonstrated that CaMK2 α expression in the ELL was restricted to fibers and terminals in the VML. Posttetanic potentiation (PTP) could be readily elicited in pyramidal cells by stimulation of either VML or DML in brain slices of the ELL. PTP in the VML was blocked by extracellular application of a CaMK2 antagonist (KN62) while intracellular application of KN62 or a CaMK2 inhibitory peptide had no effect, consistent with the presynaptic localization of CaMK2 α in VML. PTP in the dorsal molecular layer was not affected by extracellular application of KN62. Anti-Hebbian plasticity has also been demonstrated in the VML, but was not affected by KN62. These results demonstrate that, while PTP can occur independent of CaMK2, it is, in some synapses, dependent on this kinase.
Resumo:
Multiple brain maps are commonly found in virtually every vertebrate sensory system. Although their functional significance is generally relatively little understood, they seem to specialize in processing distinct sensory parameters. Nevertheless, to yield the stimulus features that ultimately elicit the adaptive behavior, it appears that information streams have to be combined across maps. Results from current lesion experiments in the electrosensory system, however, suggest an alternative possibility. Inactivations of different maps of the first-order electrosensory nucleus in electric fish, the electrosensory lateral line lobe, resulted in markedly different behavioral deficits. The centromedial map is both necessary and sufficient for a particular electrolocation behavior, the jamming avoidance response, whereas it does not affect the communicative response to external electric signals. Conversely, the lateral map does not affect the jamming avoidance response but is necessary and sufficient to evoke communication behavior. Because the premotor pathways controlling the two behaviors in these fish appear to be separated as well, this system illustrates that sensory–motor control of different behaviors can occur in strictly segregated channels from the sensory input of the brain all through to its motor output. This might reflect an early evolutionary stage where multiplication of brain maps can satisfy the demand on processing a wider range of sensory signals ensuing from an enlarged behavioral repertoire, and bridging across maps is not yet required.
Resumo:
The barn owl (Tyto alba) uses interaural time difference (ITD) cues to localize sounds in the horizontal plane. Low-order binaural auditory neurons with sharp frequency tuning act as narrow-band coincidence detectors; such neurons respond equally well to sounds with a particular ITD and its phase equivalents and are said to be phase ambiguous. Higher-order neurons with broad frequency tuning are unambiguously selective for single ITDs in response to broad-band sounds and show little or no response to phase equivalents. Selectivity for single ITDs is thought to arise from the convergence of parallel, narrow-band frequency channels that originate in the cochlea. ITD tuning to variable bandwidth stimuli was measured in higher-order neurons of the owl’s inferior colliculus to examine the rules that govern the relationship between frequency channel convergence and the resolution of phase ambiguity. Ambiguity decreased as stimulus bandwidth increased, reaching a minimum at 2–3 kHz. Two independent mechanisms appear to contribute to the elimination of ambiguity: one suppressive and one facilitative. The integration of information carried by parallel, distributed processing channels is a common theme of sensory processing that spans both modality and species boundaries. The principles underlying the resolution of phase ambiguity and frequency channel convergence in the owl may have implications for other sensory systems, such as electrolocation in electric fish and the computation of binocular disparity in the avian and mammalian visual systems.
Resumo:
Coleridge, looking back at the end of the ‘long eighteenth century’, remarked that the whole of natural philosophy had been ‘electrified’ by advances in the understanding of electrical phenomena. In this paper I trace the way in which these advances affected contemporary ‘neurophysiology.’ At the beginning of the long eighteenth century, neurophysiology (in spite of Swammerdam’s and Glisson’s demonstrations to the contrary) was still understood largely in terms of hollow nerves and animal spirits. At the end of that period the researches of microscopists and electricians had convinced most medical men that the old understanding had to be replaced. Walsh, Patterson, John Hunter and others had described the electric organs of electric fish. Gray and Nollet had demonstrated that electricity was not merely static, but flowed. Franklin had alerted the world to atmospheric electricity. Galvani’s frog experiments were widely known. Volta had invented his ‘pile.’ But did ‘animal electricity’ exist and was it identical to the electricity physicists studied in the inanimate world? Was the brain a gland, as Malpighi’s researches seemed to confirm., and did it secrete electricity into the nervous system? The Monros (primus and secundus), William Cullen, Luigi Galvani, Alessandro Volta, Erasmus Darwin, Luigi Rolando and François Baillarger all had their own ideas. This paper reviews these ‘long-eighteenth century’ controversies with special reference to the Edinburgh medical school and the interaction between neurophysiology and physics.
Resumo:
We study a minimal integrate-and-fire based model of a "ghostbursting" neuron under periodic stimulation. These neurons are involved in sensory processing in weakly electric fish. There exist regions in parameter space in which the model neuron is mode-locked to the stimulation. We analyse this locked behavior and examine the bifurcations that define the boundaries of these regions. Due to the discontinuous nature of the flow, some of these bifurcations are nonsmooth. This exact analysis is in excellent agreement with numerical simulations, and can be used to understand the response of such a model neuron to biologically realistic input.
Resumo:
The effect of AC and DC electric stimulations on the heart-rate and the entire body of Heteropneustis fossillis, Tilapia mossambica and Macrobrachium rosenbergii were studied and presented in kymograph tracings. The reaction of spinal cord in Puntius ticto, Heteropneustis fossilis and Tilapia mossambica to D. C. field was observed to find out its role in electric shocks. A test-check of the electrical resistance of a few species was also conducted. The effect of D. C. and A.C. on the body muscle was found to be the same as that in the case of frog. Different degrees of cardiac slowing were observed in AC and DC. Unbalanced galvanotropic movements were also noticed in spinal fishes.
Resumo:
Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. The ability to dynamically regulate the signal in a context-dependent manner can further minimize the costs of male aggressive interactions. Such is the case in the gymnotiform fish Brachyhypopomus gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive the greatest reproductive benefit. My dissertation research examined the functional role of the EOD plasticity observed in male B. gauderio and the physiological mechanisms that regulate the enhanced male EOD. To evaluate whether social competition drives the EOD changes observed during male-male interactions, I manipulated the number of males in breeding groups to create conditions that exemplified low and high competition and measured their EOD and steroid hormone levels. My results showed that social competition drives the enhancement of the EOD amplitude of male B. gauderio. In addition, changes in the EOD of males due to changes in their social environment were paralleled by changes in the levels of androgens and cortisol. I also examined the relationship between body size asymmetry, EOD waveform parameters, and aggressive physical behaviors during male-male interactions in B. gauderio, in order to understand more fully the role of EOD waveforms as reliable signals. While body size was the best determinant of dominance in male B. gauderio, EOD amplitude reliably predicted body condition, a composite of length and weight, for fish in good body condition. To further characterize the mechanisms underlying the relationship between male-male interactions and EOD plasticity, I identified the expression of the serotonin receptor 1A, a key player in the regulation of aggressive behavior, in the brains of B. gauderio. I also identified putative regulatory regions in this receptor in B. gauderio and other teleost fish, highlighting the presence of additional plasticity. In conclusion, male-male competition seems to be a strong selective driver in the evolution of the male EOD plasticity in B. gauderio via the regulatory control of steroid hormones and the serotonergic system.
Resumo:
Waste water from some National Electric Power Authority (NEPA) housing units in Nigeria was fed to a 0.4 ha pond which was stocked with 2,200 Sarotherodon galilaeus fingerlings with a mean weight of about 36.0gm and 1000 Cyprinus carpio fingerlings with a mean weight of 10gm. This yielded after 10 months, over 2300 kg of harvestable fish plus over 20,000 Sarotherodon galilaeus fingerlings. The growth rate of C. carpio was not very encouraging possibly because of the type of plankton that colonised the pond. The S. galilaeus became stunted because of overpopulation as there were no carnivores to control their excessive breeding. The physico-chemical parameters were favourable for the growth of fish food organisms
Resumo:
The identification of fish zones in western and central Europe has been the objective some major studies. This paper concerns a stream in Normandy specially studied by the author in 1969 and 1970 in the framework of a study on the role of the mean temperature in fish zoning. The paper propounds the comparative study of the morphodynamic and occasionally physico-chemical characteristics, as well as the results of previous sampling by electric fishing of the fish populations of two other streams of the higher Cretaceous layer and supplied by ”chalky” water in Normandy and Picardy.
Resumo:
Although geographically the River Wyre lies between two rivers containing major migrations of adult salmon and sea trout, its rod & line fisheries have for a number of years produced exceptionally low catches. In order to determine the causes of this the Wyre Salmon and Sea trout Restoration Group (WSSRG) was conceived in 1994 as a partnership between the then National Rivers Authority (now Environment Agency), local landowners, angling clubs and interested parties. Two studies of 1994 and 1995 stated that there is a shortage of useable spawning gravels on the river. This is compounded by Abbeystead Reservoir acting as a gravel trap, the siltation of gravels on several side becks and problems with access to available gravels by returning adults. There was also perceived to be a need for accurate fishery data from the river encompassing redd counts, catch data and surveys of fry populations. The 1995 report suggested a number of management proposals which might be adopted in order to improve and create available spawning habitat for migratory salmonids. Funding was made available to create three spawning gravels on each of two side becks (Grizedale Beck and Joshua's Beck) and the addition of gravels to a site oh the main river below Abbeystead Reservoir. Modifications were also made to the fish pass at Abbeystead to allow easier passage of fish. These improvements were made in the autumn of 1995. Salmonid spawning redd counting was undertaken on the whole Wyre catchment in 1995/1996 and specific surveys by electric fishing on the gravel enhancement sites in the summer of 1996. This report details the current state of the improvement works that were undertaken and presents the results of electric fishing surveys in September 1996. A number of lessons have been learnt which will be of great benefit to the Fisheries Function in other parts of the Wyre catchment and the Central Area in general.