995 resultados para ecological research
Resumo:
In 1990, "BICER" or the Baikal International Centre for Ecological Research was created to foster collaborative research on Lake Baikal. The British effort in BICER was initiated and is administered by the Royal Society, London. Much of the on-going research effort is now focussed on environmental change, as there is increasing concern about recent changes in the lake's unique ecosystem that could be linked with the effects of water pollution from catchment effluents. Monitoring studies of the phytoplankton in Lake Baikal's southern basin indicate that several species have increased in abundance since the mid-70's. Diatoms in Lake Baikal sediments are also being studied.
Resumo:
Since the inception of the LTER Program in 1980, climate has been studied at individual LTER sites and an LTER Climate Committee has been responsible for inter-site activities. At individual sites, climate studies support ecological research, emphasize inter-site heterogeneity, and often relate to other national monitoring and research programs. In inter-site work, the Climate Committee has produced protocols for meteorological observations, described and compared climates of the first 11 sites, and raised important issues regarding climate variability and ecosystem response.
Resumo:
Ecological stability is touted as a complex and multifaceted concept, including components such as variability, resistance, resilience, persistence and robustness. Even though a complete appreciation of the effects of perturbations on ecosystems requires the simultaneous measurement of these multiple components of stability, most ecological research has focused on one or a few of those components analysed in isolation. Here, we present a new view of ecological stability that recognises explicitly the non-independence of components of stability. This provides an approach for simplifying the concept of stability. We illustrate the concept and approach using results from a field experiment, and show that the effective dimensionality of ecological stability is considerably lower than if the various components of stability were unrelated. However, strong perturbations can modify, and even decouple, relationships among individual components of stability. Thus, perturbations not only increase the dimensionality of stability but they can also alter the relationships among components of stability in different ways. Studies that focus on single forms of stability in isolation therefore risk underestimating significantly the potential of perturbations to destabilise ecosystems. In contrast, application of the multidimensional stability framework that we propose gives a far richer understanding of how communities respond to perturbations.
Resumo:
Fundamental ecological research is both intrinsically interesting and provides the basic knowledge required to answer applied questions of importance to the management of the natural world. The 100th anniversary of the British Ecological Society in 2013 is an opportune moment to reflect on the current status of ecology as a science and look forward to high-light priorities for future work. To do this, we identified 100 important questions of fundamental importance in pure ecology. We elicited questions from ecologists working across a wide range of systems and disciplines. The 754 questions submitted (listed in the online appendix) from 388 participants were narrowed down to the final 100 through a process of discussion, rewording and repeated rounds of voting. This was done during a two-day workshop and thereafter. The questions reflect many of the important current conceptual and technical pre-occupations of ecology. For example, many questions concerned the dynamics of environmental change and complex ecosystem interactions, as well as the interaction between ecology and evolution. The questions reveal a dynamic science with novel subfields emerging. For example, a group of questions was dedicated to disease and micro-organisms and another on human impacts and global change reflecting the emergence of new subdisciplines that would not have been foreseen a few decades ago. The list also contained a number of questions that have perplexed ecologists for decades and are still seen as crucial to answer, such as the link between population dynamics and life-history evolution. Synthesis. These 100 questions identified reflect the state of ecology today. Using them as an agenda for further research would lead to a substantial enhancement in understanding of the discipline, with practical relevance for the conservation of biodiversity and ecosystem function. © 2013 The Authors. Journal of Ecology © 2013 British Ecological Society.
Resumo:
In this paper, we ask why so much ecological scientific research does not have a greater policy impact in the UK. We argue that there are two potentially important and related reasons for this failing. First, much current ecological science is not being conducted at a scale that is readily meaningful to policy-makers. Second, to make much of this research policy-relevant requires collaborative interdisciplinary research between ecologists and social scientists. However, the challenge of undertaking useful interdisciplinary research only re-emphasises the problems of scale: ecologists and social scientists traditionally frame their research questions at different scales and consider different facets of natural resource management, setting different objectives and using different language. We argue that if applied ecological research is to have greater impact in informing environmental policy, much greater attention needs to be given to the scale of the research efforts as well as to the interaction with social scientists. Such an approach requires an adjustment in existing research and funding infrastructures.
Resumo:
The size and complexity of data sets generated within ecosystem-level programmes merits their capture, curation, storage and analysis, synthesis and visualisation using Big Data approaches. This review looks at previous attempts to organise and analyse such data through the International Biological Programme and draws on the mistakes made and the lessons learned for effective Big Data approaches to current Research Councils United Kingdom (RCUK) ecosystem-level programmes, using Biodiversity and Ecosystem Service Sustainability (BESS) and Environmental Virtual Observatory Pilot (EVOp) as exemplars. The challenges raised by such data are identified, explored and suggestions are made for the two major issues of extending analyses across different spatio-temporal scales and for the effective integration of quantitative and qualitative data.
Resumo:
Biodiversity is organised into complex ecological networks of interacting species in local ecosystems, but our knowledge about the effects of habitat fragmentation on such systems remains limited. We consider the effects of this key driver of both local and global change on both mutualistic and antagonistic systems at different levels of biological organisation and spatiotemporal scales.There is a complex interplay of patterns and processes related to the variation and influence of spatial, temporal and biotic drivers in ecological networks. Species traits (e.g. body size, dispersal ability) play an important role in determining how networks respond to fragment size and isolation, edge shape and permeability, and the quality of the surrounding landscape matrix. Furthermore, the perception of spatial scale (e.g. environmental grain) and temporal effects (time lags, extinction debts) can differ markedly among species, network modules and trophic levels, highlighting the need to develop a more integrated perspective that considers not just nodes, but the structural role and strength of species interactions (e.g. as hubs, spatial couplers and determinants of connectance, nestedness and modularity) in response to habitat fragmentation.Many challenges remain for improving our understanding: the likely importance of specialisation, functional redundancy and trait matching has been largely overlooked. The potentially critical effects of apex consumers, abundant species and supergeneralists on network changes and evolutionary dynamics also need to be addressed in future research. Ultimately, spatial and ecological networks need to be combined to explore the effects of dispersal, colonisation, extinction and habitat fragmentation on network structure and coevolutionary dynamics. Finally, we need to embed network approaches more explicitly within applied ecology in general, because they offer great potential for improving on the current species-based or habitat-centric approaches to our management and conservation of biodiversity in the face of environmental change.
Resumo:
While ecological monitoring and biodiversity assessment programs are widely implemented and relatively well developed to survey and monitor the structure and dynamics of populations and communities in many ecosystems, quantitative assessment and monitoring of genetic and phenotypic diversity that is important to understand evolutionary dynamics is only rarely integrated. As a consequence, monitoring programs often fail to detect changes in these key components of biodiversity until after major loss of diversity has occurred. The extensive efforts in ecological monitoring have generated large data sets of unique value to macro-scale and long-term ecological research, but the insights gained from such data sets could be multiplied by the inclusion of evolutionary biological approaches. We argue that the lack of process-based evolutionary thinking in ecological monitoring means a significant loss of opportunity for research and conservation. Assessment of genetic and phenotypic variation within and between species needs to be fully integrated to safeguard biodiversity and the ecological and evolutionary dynamics in natural ecosystems. We illustrate our case with examples from fishes and conclude with examples of ongoing monitoring programs and provide suggestions on how to improve future quantitative diversity surveys.
Resumo:
Nowadays we meet many different evaluation methods regarding the ecological performance of green surfaces and parks. All these methods are extremely valuable in determining how well a green surface performs from ecological aspect and to what extent the environment were damaged if these sites would be built or would be developed any other way causing reduction of green surfaces. The goal of the article is to clarify the differences between two evaluation methods (GSI – Green Space Intensity, BARC – Biological Activity Rate Calculation) suitable for urban green infrastructure analysis and to see if any significant difference can be observed evaluating the same site by these methods. Our research sites are in Budapest and their sizes vary between 2,5-8 acres. The most important aspects of site analysis are the following: size and boundaries of the park, existence or lack of water features, the characteristics of their surfaces and the complexity of vegetation. We summarize the data of the site analysis in tables, make a summarizing diagram for visual representation and draw conclusions from the results. As a final step, we evaluate how these two evaluation systems relate to urban open space developments.
Resumo:
Mexico harbors more than 10% of the planet’s endemic species. However, the integrity and biodiversity of many ecosystems is experiencing rapid transformation under the influence of a wide array of human and natural disturbances. In order to disentangle the effects of human and natural disturbance regimes at different spatial and temporal scales, we selected six terrestrial (temperate montane forests, montane cloud forests, tropical rain forests, tropical semi-deciduous forests, tropical dry forests, and deserts) and four aquatic (coral reefs, mangrove forests, kelp forests and saline lakes) ecosystems. We used semiquantitative statistical methods to assess (1) the most important agents of disturbance affecting the ecosystems, (2) the vulnerability of each ecosystem to anthropogenic and natural disturbance, and (3) the differences in ecosystem disturbance regimes and their resilience. Our analysis indicates a significant variation in ecological responses, recovery capacity, and resilience among ecosystems. The constant and widespread presence of human impacts on both terrestrial and aquatic ecosystems is reflected either in reduced area coverage for most systems, or reduced productivity and biodiversity, particularly in the case of fragile ecosystems (e.g., rain forests, coral reefs). In all cases, the interaction between historical human impacts and episodic high intensity natural disturbance (e.g., hurricanes, fires) has triggered a reduction in species diversity and induced significant changes in habitat distribution or species dominance. The lack of monitoring programs assessing before/after effects of major disturbances in Mexico is one of the major limitations to quantifying the commonalities and differences of disturbance effects on ecosystem properties.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This paper synthesizes research conducted during the first 5–6 years of the Florida Coastal Everglades Long-Term Ecological Research Program (FCE LTER). My objectives are to review our research to date, and to present a new central theme and conceptual approach for future research. Our research has focused on understanding how dissolved organic matter (DOM) from upstream oligotrophic marshes interacted with a marine source of the limiting nutrient, phosphorus (P), to control productivity in the oligohaline estuarine ecotone. We have been working along freshwater to marine transects in two drainage basins located in Everglades National Park (ENP). The Shark River Slough transect (SRS) has a direct connection to the Gulf of Mexico, providing this estuarine ecotone with a source of marine P. The oligohaline ecotone along our southern Everglades transect (TS/Ph), however, is separated from this marine P source by the Florida Bay estuary. We originally hypothesized an ecosystem productivity peak in the SRS ecotone, driven by the interaction of marine P and Everglades DOM, but no such productivity peak in the TS/Ph ecotone because of this lack of marine P. Our research to date has tended to show the opposite pattern, however, with many ecosystem components showing enhanced productivity in the TS/Ph ecotone, but not in the SRS ecotone. Water column P concentrations followed a similar pattern, with unexpectedly high P in the TS/Ph ecotone during the dry season. Our organic geochemical research has shown that Everglades DOM is more refractory than originally hypothesized. We have also begun to understand the importance of detrital organic matter production and transport to ecotone dynamics and as the base of aquatic food webs. Our future research will build on this substantial body of knowledge about these oligotrophic estuaries. We will direct our efforts more strongly on biophysical dynamics in the oligohaline ecotone regions. Specifically, we will be focusing on inputs to these regions from four primary water sources: freshwater Everglades runoff, net precipitation, marine inputs, and groundwater. We are hypothesizing that dry season groundwater inputs of P will be particularly important to TS/Ph ecotone dynamics because of longer water residence times in this area. Our organic geochemical, biogeochemical, and ecosystem energetics work will focus more strongly on the importance of detrital organics and will take advantage of a key Everglades Restoration project, scheduled for 2008 or 2009, that will increase freshwater inputs to our SRS transect only. Finally, we will also begin to investigate the human dimensions of restoration, and of a growing population in south Florida that will become increasingly dependent on the Everglades for critical ecosystem services (including fresh water) even as its growth presents challenges to Everglades sustainability.