1000 resultados para dynamic softening


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compression, tension and high-velocity plate impact experiments were performed on a typical tough Zr41.2Ti13.8Cu10Ni12.5Be22.5 (Vit 1) bulk metallic glass (BMG) over a wide range of strain rates from similar to 10(-4) to 10(6) s(-1). Surprisingly, fine dimples and periodic corrugations on a nanoscale were also observed on dynamic mode I fracture surfaces of this tough Vit 1. Taking a broad overview of the fracture patterning of specimens, we proposed a criterion to assess whether the fracture of BMGs is essentially brittle or plastic. If the curvature radius of the crack tip is greater than the critical wavelength of meniscus instability [F. Spaepen, Acta Metall. 23 615 (1975); A.S. Argon and M. Salama, Mater. Sci. Eng. 23 219 (1976)], microscale vein patterns and nanoscale dimples appear on crack surfaces. However, in the opposite case, the local quasi-cleavage/separation through local atomic clusters with local softening in the background ahead of the crack tip dominates, producing nanoscale periodic corrugations. At the atomic cluster level, energy dissipation in fracture of BMGs is, therefore, determined by two competing elementary processes, viz. conventional shear transformation zones (STZs) and envisioned tension transformation zones (TTZs) ahead of the crack tip. Finally, the mechanism for the formation of nanoscale periodic corrugation is quantitatively discussed by applying the present energy dissipation mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cuttings in heavily overconsolidated clays are known to be susceptible to progressive deformation caused by creep and fatigue that usually begins at the toe of the slope. The progressive deformation leads to strength reduction with time at constant stress (or called softening) and could be accelerated by fluctuation of groundwater level associated with more extreme rainfall events predicted through climate change. The purpose of this paper is to assess the mechanism of progressive deformation due to creep and fatigue using element testing on samples of till. The samples were subjected to fully drained loading and the deviator stresses were held constant at various percentages of peak failure stress, while the pore water pressure was kept static or dynamic (fluctuating ±5 kPa) over a period of time. The results have shown that the samples experienced significant deformation even at a higher factor of safety (i.e. the failure deviator stress/deviator stress at which the pore water pressure was fluctuated) under pore water pressure dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grain refinement during and after hot isothermal deformation of a medium carbon steel has been investigated. The average austenite grain size decreased with an increase in strain for the hot deformed and recrystallised material, with refinement extending beyond the strain for the peak stress. A window of strain that corresponds to transition from classical static to metadynamic recrystallisation was observed in respect to the recrystallised material. Within this post-dynamic transition window the strain at which strain independent softening occurs was different for different volume fractions of the recrystallised material. This led to a new terminology corresponding to initiation of strain independent softening. For the alloy of this study, strain independent softening for the start of post-deformation recrystallisation occurred near the strain to the peak stress. The strain corresponding to complete metadynamic recrystallisation, which was defined as when all levels of recrystallisation were strain independent, was much greater than the strain for the peak stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The post-deformation softening behaviour of austenite has been studied for various compositions and deformation conditions. The strain at which the transition from strain dependent to strain independent post-deformation softening behaviour occurs (ε*) has been found to coincide closely with the strain to the peak stress (εp) under certain conditions but not under others. It has been proposed that the relationship between ε* and εp may be described geometrically using the initial grain size and the dynamically recrystallised grain size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relation between the deformation and post-deformation softening behaviours of austenite is examined in a 304 stainless steel. This correlation has been exploited in the modelling of hot rolling and it is argued here that the key to this understanding lies in the deformation structure. The latter is characterized in the present work by the fraction of dynamic recrystallization. The value of this fraction at the peak in the flow stress curve is found to decrease with increasing stress (i.e. with decreasing temperature and increasing strain rate). By contrast, the fraction of dynamic  recrystallization at the strain corresponding to the point where  post-deformation softening becomes strain independent is found to be constant. These observations are used to explain the nature of the important difference between the flow curve peak and the onset of strain independent post-deformation softening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present work was to undertake a detailed investigation of the softening mechanisms during hot deformation of a 21Cr-10Ni-3Mo (steel A) and a 21Cr-8Ni-3Mo (steel B) austenite/ferrite duplex stainless steels containing about 60% and 30% of austenite, respectively. The steels were subjected to hot deformation in torsion performed at 900 ºC and 1200 ºC using a strain rate of 0.7 s-1 to several strain levels. Quantitative optical and transmission electron microscopy were used in the investigation. Austenite was observed to soften via dynamic recovery (DRV) and dynamic recrystallisation (DRX) accompanied by DRV for the deformation temperatures of 900 °C and 1200 °C, respectively, for the both steels studied. DRX of austenite largely occurred through strain-induced grain boundary migration, complemented by (multiple) twinning, and developed significantly faster in steel A than in steel B, indicating that considerably larger strains partitioned into austenite in the former steel during deformation at 1200 °C. The above softening mechanism was accompanied by the formation of DRX grains from subgrains along the austenite/ferrite interface and by large-scale subgrain coalescence. At 900°C, stressassisted phase transitions between austenite and ferrite were observed, characterised by dissolution of the primary austenite, formation of Widmanstätten secondary austenite and gradual globularisation of the microstructure with increasing strain. These processes appeared to be significantly more widespread in steel B. The softening mechanism within ferrite for the both steels studied was classified as “continuous DRX”, characterised by a gradual increase in misorientations between neighbouring subgrains with strain, for the both deformation temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work provides a summary of the recent findings obtained from the experimental investigation of the grain structure, crystallographic texture and dislocation substructure evolution in an austenitic Ni-30%Fe model alloy during dynamic recrystallization (DRX) and post-dynamic annealing. It has been found that the DRX texture characteristics become increasingly dominated by the low Taylor factor grains during DRX development, which presumably results from the preferred nucleation and lower consumption rates of these grains. The substructure of DRX grains is “random” in character and displays complex, hierarchical subgrain/cell arrangements characterized by accumulation of misorientations across significant distances. The stored energy within DRX grains appears to be principally consistent with the corresponding Taylor factor values. The changes observed within the fully dynamically recrystallized microstructure during postdynamic annealing have provided a basis to suggest a novel mechanism of metadynamic softening for the current experimental conditions. It is proposed that the initial softening stage involves rapid growth of the dynamically formed nuclei and migration of the mobile boundaries. The subboundaries within DRX grains progressively disintegrate through dislocation climb and dislocation annihilation, which ultimately leads to the formation of dislocation-free grains, and the grain boundary migration gradually becomes slower. As a result, the DRX texture largely remains preserved throughout the annealing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructure evolution and softening processes occurring in 22Cr-19Ni-3Mo austenitic and 21Cr-10Ni-3Mo duplex stainless steels deformed in torsion at 900 and 1200 °C were studied in the present work. Austenite was observed to soften in both steels via dynamic recovery (DRV) and dynamic recrystallisation (DRX) for the low and high deformation temperatures, respectively. At 900 °C, an "organised", self-screening austenite deformation substructure largely comprising microbands, locally accompanied by micro-shear bands, was formed. By contrast, a "random", accommodating austenite deformation substructure composed of equiaxed subgrains formed at 1200 °C. In the single-phase steel, DRX of austenite largely occurred through straininduced grain boundary migration accompanied by (multiple) twinning. In the duplex steel, this softening mechanism was complemented by the formation of DRX grains through subgrain growth in the austenite/ferrite interface regions and by large-scale subgrain coalescence. At 900 °C, the duplex steel displayed limited stress-assisted phase transformations between austenite and ferrite, characterised by the dissolution of the primary austenite, formation of Widmanstätten secondary austenite and gradual globularisation of the transformed regions with strain. The softening process within ferrite was classified as "extended DRV", characterised by a continuous increase in misorientations across the sub-boundaries with strain, for both deformation temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bulk metallic glasses (BMGs) exhibit superior mechanical properties as compared with other conventional materials and have been proposed for numerous engineering and technological applications. Zr/Hf-based BMGs or tungsten reinforced BMG composites are considered as a potential replacement for depleted uranium armor-piercing projectiles because of their ability to form localized shear bands during impact, which has been known to be the dominant plastic deformation mechanism in BMGs. However, in conventional tensile, compressive and bending tests, limited ductility has been observed because of fracture initiation immediately following the shear band formation. To fully investigate shear band characteristics, indentation tests that can confine the deformation in a limited region have been pursued. In this thesis, a detailed investigation of thermal stability and mechanical deformation behavior of Zr/Hf-based BMGs is conducted. First, systematic studies had been implemented to understand the influence of relative compositions of Zr and Hf on thermal stability and mechanical property evolution. Second, shear band evolution under indentations were investigated experimentally and theoretically. Three kinds of indentation studies were conducted on BMGs in the current study. (a) Nano-indentation to determine the mechanical properties as a function of Hf/Zr content. (b) Static Vickers indentation on bonded split specimens to investigate the shear band evolution characteristics beneath the indention. (c) Dynamic Vickers indentation on bonded split specimens to investigate the influence of strain rate. It was found in the present work that gradually replacing Zr by Hf remarkably increases the density and improves the mechanical properties. However, a slight decrease in glass forming ability with increasing Hf content has also been identified through thermodynamic analysis although all the materials in the current study were still found to be amorphous. Many indentation studies have revealed only a few shear bands surrounding the indent on the top surface of the specimen. This small number of shear bands cannot account for the large plastic deformation beneath the indentations. Therefore, a bonded interface technique has been used to observe the slip-steps due to shear band evolution. Vickers indentations were performed along the interface of the bonded split specimen at increasing loads. At small indentation loads, the plastic deformation was primarily accommodated by semi-circular primary shear bands surrounding the indentation. At higher loads, secondary and tertiary shear bands were formed inside this plastic zone. A modified expanding cavity model was then used to predict the plastic zone size characterized by the shear bands and to identify the stress components responsible for the evolution of the various types of shear bands. The applicability of various hardness—yield-strength ( H −σγ ) relationships currently available in the literature for bulk metallic glasses (BMGs) is also investigated. Experimental data generated on ZrHf-based BMGs in the current study and those available elsewhere on other BMG compositions were used to validate the models. A modified expanding-cavity model, employed in earlier work, was extended to propose a new H −σγ relationship. Unlike previous models, the proposed model takes into account not only the indenter geometry and the material properties, but also the pressure sensitivity index of the BMGs. The influence of various model parameters is systematically analyzed. It is shown that there is a good correlation between the model predictions and the experimental data for a wide range of BMG compositions. Under dynamic Vickers indentation, a decrease in indentation hardness at high loading rate was observed compared to static indentation hardness. It was observed that at equivalent loads, dynamic indentations produced more severe deformation features on the loading surface than static indentations. Different from static indentation, two sets of widely spaced semi-circular shear bands with two different curvatures were observed. The observed shear band pattern and the strain rate softening in indentation hardness were rationalized based on the variations in the normal stress on the slip plane, the strain rate of shear and the temperature rise associated with the indentation deformation. Finally, a coupled thermo-mechanical model is proposed that utilizes a momentum diffusion mechanism for the growth and evolution of the final spacing of shear bands. The influence of strain rate, confinement pressure and critical shear displacement on the shear band spacing, temperature rise within the shear band, and the associated variation in flow stress have been captured and analyzed. Consistent with the known pressure sensitive behavior of BMGs, the current model clearly captures the influence of the normal stress in the formation of shear bands. The normal stress not only reduces the time to reach critical shear displacement but also causes a significant temperature rise during the shear band formation. Based on this observation, the variation of shear band spacing in a typical dynamic indentation test has been rationalized. The temperature rise within a shear band can be in excess of 2000K at high strain rate and high confinement pressure conditions. The associated drop in viscosity and flow stress may explain the observed decrease in fracture strength and indentation hardness. The above investigations provide valuable insight into the deformation behavior of BMGs under static and dynamic loading conditions. The shear band patterns observed in the above indentation studies can be helpful to understand and model the deformation features under complex loading scenarios such as the interaction of a penetrator with armor. Future work encompasses (1) extending and modifying the coupled thermo-mechanical model to account for the temperature rise in quasistatic deformation; and (2) expanding this model to account for the microstructural variation-crystallization and free volume migration associated with the deformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tensile deformation behavior of a range of supersaturated Mg-Al solid solutions and an as-cast magnesium alloy AM60 has been studied. The Mg-Al alloys were tested at room temperature while the alloy AM60 was tested in the temperature range 293-573 K. The differences in the deformation behavior of the alloys is discussed in terms of hardening and softening processes. In order to identify which processes were active, the stress dependence of the strain-hardening coefficient was assessed using Lukac and Balik's model of hardening and softening. The analysis indicates that hardening involves solid solution hardening and interaction with forest dislocations and non-dislocation obstacles such as second phase particles. Cross slip is not a significant recovery process in the temperature range 293-423 K. At temperatures between 473 and 523 K the analysis suggests that softening is controlled by cross slip and climb of dislocations. At temperatures above 523 K softening seems to be controlled by dynamic recrystallisation. (C) 2004 Elsevier B.V. All rights reserved.