436 resultados para dung beetle
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Extant terrestrial biodiversity arguably is driven by the evolutionary success of angiosperm plants, but the evolutionary mechanisms and timescales of angiosperm-dependent radiations remain poorly understood. The Scarabaeoidea is a diverse lineage of predominantly plant- and dung-feeding beetles. Here, we present a phylogenetic analysis of Scarabaeoidea based on four DNA markers for a taxonomically comprehensive set of specimens and link it to recently described fossil evidence. The phylogeny strongly supports multiple origins of coprophagy, phytophagy and anthophagy. The ingroup-based fossil calibration of the tree widely confirmed a Jurassic origin of the Scarabaeoidea crown group. The crown groups of phytophagous lineages began to radiate first (Pleurostict scarabs: 108 Ma; Glaphyridae between 101 Ma), followed by the later diversification of coprophagous lineages (crown-group age Scarabaeinae: 76 Ma; Aphodiinae: 50 Ma). Pollen feeding arose even later, at maximally 62 Ma in the oldest anthophagous lineage. The clear time lag between the origins of herbivores and coprophages suggests an evolutionary path driven by the angiosperms that first favoured the herbivore fauna (mammals and insects) followed by the secondary radiation of the dung feeders. This finding makes it less likely that extant dung beetle lineages initially fed on dinosaur excrements, as often hypothesized.
Resumo:
These data sets report the fossil beetle assemblages identified from the Mesolithic to Late Bronze Age at eight sites in the London region. All but one of the study sites are within 2 km of the modern course of the Thames. The sites produced 128 faunal assemblages that yielded 218 identified species in 41 families of Coleoptera (beetles). Beetle faunas of Mesolithic age indicate extensive wetlands near the Thames, bordered by rich deciduous woodlands. The proportion of woodland species declined in the Neolithic, apparently because of the expansion of wetlands, rather than because of human activities. The Early Bronze Age faunas contained a greater proportion of coniferous woodland and aquatic (standing water) species. An increase in the dung beetle fauna indicates the presence of sheep, cattle and horses, and various beetles associated with crop lands demonstrate the local rise of agriculture, albeit several centuries after the beginnings of farming in other regions of Britain. Late Bronze Age faunas show the continued development of agriculture and animal husbandry along the lower Thames. About 33% of the total identified beetle fauna from the London area sites have limited modern distributions or are extinct in the U.K. Some of these species are associated with the dead wood found in primeval forests; others are wetland species whose habitat has been severely reduced in recent centuries. The third group is stream-dwelling beetles that require clean, clear waters and river bottoms.
Resumo:
In endotherms insects, the thermoregulatory mechanisms modulate heat transfer from the thorax to the abdomen to avoid overheating or cooling in order to obtain a prolonged flight performance. Scarabaeus sacer and S. cicatricosus, two sympatric species with the same habitat and food preferences, showed daily temporal segregation with S. cicatricosus being more active during warmer hours of the day in opposition to S. sacer who avoid it. In the case of S. sacer, their endothermy pattern suggested an adaptive capacity for thorax heat retention. In S. cicatricosus, an active ‘heat exchanger’ mechanism was suggested. However, no empirical evidence had been documented until now. Thermographic sequences recorded during flight performance showed evidence of the existence of both thermoregulatory mechanisms. In S. sacer, infrared sequences showed a possible heat insulator (passive thermal window), which prevents heat transfer from meso- and metathorax to the abdomen during flight. In S. cicatricosus, infrared sequences revealed clear and effective heat flow between the thorax and abdomen (abdominal heat transfer) that should be considered the main mechanism of thermoregulation. This was related to a subsequent increase in abdominal pumping (as a cooling mechanism) during flight. Computer microtomography scanning, anatomical dissections and internal air volume measurements showed two possible heat retention mechanisms for S. sacer; the abdominal air sacs and the development of the internal abdominal sternites that could explain the thermoregulation between thorax and abdomen. Our results suggest that interspecific interactions between sympatric species are regulated by very different mechanisms. These mechanisms create unique thermal niches for the different species, thereby preventing competition and modulating spatio-temporal distribution and the composition of dung beetle assemblages.
Resumo:
In some cases external morphology is not sufficient to discern between populations of a species, as occurs in the dung beetle Canthon humectus hidalgoensis Bates; and much less to determine phenotypic distances between them. FTIR-ATR spectroscopy show several advantages over other identification techniques (e.g. morphological, genetic, and cuticular hydrocarbons analysis) due to the non-invasive manner of the sample preparation, the relative speed of sample analysis and the low-cost of this technology. The infrared spectrum obtained is recognized to give a unique ‘fingerprint’ because vibrational spectra are specific and unique to the molecular nature of the sample. In our study, results showed that proteins, amino acids and aromatic ethers of insect exocuticle have promising discriminative power to discern between different populations of C. h. hidalgoensis. Furthermore, the correlation between geographic distances between populations and the chemical distances obtained by proteins + amino acids + aromatic ethers was statistically significant, showing that the spectral and spatial information available of the taxa together with appropriated chemometric methods may help to a better understanding of the identity, structure, dynamics and diversity of insect populations.
Resumo:
The process of seed dispersal of many animal-dispersed plants is frequently mediated by a small set of biotic agents. However, the contribution that each of these dispersers makes to the overall recruitment may differ largely, with important ecological and management implications for the population viability and dynamics of the species implied in these interactions. In this paper, we compared the relative contribution of two local guilds of scatter-hoarding animals with contrasting metabolic requirements and foraging behaviours (rodents and dung beetles) to the overall recruitment of two Quercus species co-occurring in the forests of southern Spain. For this purpose, we considered not only the quantity of dispersed seeds but also the quality of the seed dispersal process. The suitability for recruitment of the microhabitats where the seeds were deposited was evaluated in a multi-stage demographic approach. The highest rates of seed handling and predation occurred in those microhabitats located under shrubs, mostly due to the foraging activity of rodents. However, the probability of a seed being successfully cached was higher in microhabitats located beneath a tree canopy as a result of the feeding behaviour of beetles. Rodents and beetles showed remarkable differences in their effectiveness as local acorn dispersers. Quantitatively, rodents were much more important than beetles because they dispersed the vast majority of acorns. However, they were qualitatively less effective because they consumed a high proportion of them (over 95%), and seeds were mostly dispersed under shrubs, a less suitable microhabitat for short-term recruitment of the two oak species. Our findings demonstrate that certain species of dung beetles (such as Thorectes lusitanicus), despite being quantitatively less important than rodents, can act as effective local seed dispersers of Mediterranean oak species. Changes in the abundance of beetle populations could thus have profound implications for oak recruitment and community dynamics.
Resumo:
A new natural product was isolated from Piper arboreum (Piperaceae) leaves, the methyl 3-geranyl-4-hydroxybenzoate (1). The metabolism of P. arboreum leaves by Naupactus bipes beetle (Germar, 1824 - Coleoptera: Curculionidae) led to the hydrolysis of 1 to 3-geranyl-4-hydroxybenzoic acid (2). The structures of both compounds were determined based on spectroscopic analysis (¹H and 13C NMR, MS, and IR).
Resumo:
The mature larva and pupa of Fulgeochlizus bruchi (Candèze, 1896) are described and illustrated. Bioluminescent patterns are also given. Comments, new data on the first instar larva and natural history data are presented. The first instar larvae differ from the mature larvae mainly in their chaetotaxy, which is sparse and more symmetrically distributed.
Resumo:
This study investigated the reproductive biology of the meloid beetle Meloetyphlus fuscatus Waterhouse, a cleptoparasite of Eulaema nigrita nests. New E. nigrita nests had rates of cell parasitism by meloids ranging from 3.7% to 15.8%, while in re-used nests the rate of cell parasitism ranged from 1.4% to 18.7%. The adult parasites were never observed trying to leave the host nests. Both sexes mated more than once. Females had a high fecundity (more than 8,000 eggs), and in most cases, deposited their eggs into the empty, old cells of the host. The triungulins (the first larval instars) hatched from eggs 18-20 days after oviposition and dispersed from the host nest by attaching themselves to males as they emerged. The triungulins most likely transfer to female bees during mating and are transported to the nests of their hosts. Within an attacked cell, the triungulin consumes the bee egg and completes its development by consuming the larval food stored in the cell.
Resumo:
Predatory behaviour and reproductive output of the ladybird beetle Stethorus tridens Gordon as function of the tomato red spider mite (TRSM), Tetranychus evansi Baker & Pritchard, densities was investigated in the laboratory. Adult female of S. tridens were isolated in cylindrical plastic arenas, containing a leaf disc of Solanum americanum Mill. with 5, 20, 40, 60, 80 or 100 T. evansi nymphs. The number of prey consumed and eggs laid were evaluated daily for ten consecutive days, starting at the oviposition. Oviposition of S. tridens was positively correlated with prey consumption and lower threshold prey consumption for S. tridens laying eggs was 16.3 mites per day. The instantaneous rate of attack (ca. discovery area) and the handling time were 0.0062 h(-1) and 0.83 h, and 0.00254 h(-1) and 0.78 h, respectively, for predators at the 1st- and 10th-oviposition day. The predator exhibited a type II functional response at 1st- and 10th-oviposition day with a maximum consumption per predator of 33 T. evansi nymphs per day at the highest prey density. The ladybird beetle S. tridens is often collected associated with red spider mite colonies on solanaceous wild plants and the results suggest the potential of this ladybird beetle to control T. evansi in tomatoes crops.
Resumo:
Four factors (moisture, light regime, temperature, food type) were examined for their effects on the embryonic diapause of Homichloda (Weiseana) barkeri (Jacoby) (Coleoptera: Chrysomelidae), a biocontrol agent for prickly acacia, Acacia nilotica (L.) Willdenew ex Delile (Mimosaceae). Moisture is critical for termination of diapause. A single wetting of eggs resulted in a low hatch rate while a sequence of wetting events followed by periods of dryness produced a high hatch rate. A relatively constant proportion of embryos within each batch initiated development at each wetting event, with hatching complete after the eighth wetting event in these trials. An extended interval between wetting events, tested at up to 23 days, did not result in a decreased overall hatch rate. A threshold time of exposure to moisture of between 3 to 6 h is required before development proceeds. The response of eggs to the moisture regime is seen as a strategy for taking advantage of available food after rainfall by terminating diapause, rather than merely a quiescent response to the absence of moisture. Temperature affected development time and the proportion of eggs that developed. Experimental manipulations of photoperiod and host-plant availability showed no effect on embryonic development.
Resumo:
1. Chrysophtharta bimaculata is a native chrysomelid species that can cause chronic defoliation of plantation and regrowth Eucalyptus forests in Tasmania, Australia. Knowledge of the dispersion pattern of C. bimaculata was needed in order to assess the efficiency of an integrated pest management (IPM) programme currently used for its control. 2. Using data from yellow flight traps, local populations of C. bimaculata adults were monitored over a season at spatial scales relevant to commercial forestry: within a 50-ha operational management unit (a forestry 'coupe') and between coupes. In addition, oviposition was monitored over a season at a subset of the between-coupe sites. 3. Dispersion indices (Taylor's Power Law and Iwao's Mean Crowding regression method) demonstrated that C. bimaculata adults were spatially aggregated within and between coupes, although the number of egg-batches laid at the between-coupe scale was uniform. Spatial autocorrelation analysis showed that trap-catches at the within-coupe level were similar (positively autocorrelated) to a radius distance of approximately 110 m, and then dissimilar (negatively autocorrelated) at approximately 250 m. At the between-coupe scale, no repeatable spatial autocorrelation patterns were observed. 4. For any individual site, rapid changes in beetle density were observed to be associated with loosely aggregated flights of beetles into and out of that site. Peak adult catches (> the weekly mean plus standard deviation trap-catch) for a site occurred for a period of 2.0 +/- 0.22 weeks at a time (n = 37), with normally only one or two peaks per site per season. Peak oviposition events for a site occurred on average 1.4 +/- 0.11 times per season and lasted 1.5 +/- 0.12 weeks. 5. Analysis of an extensive data set (n = 417) demonstrated that adult abundance at a site was positively correlated with egg density, but negatively correlated with tree damage (caused by conspecifics) and the presence of conspecific larvae. There was no relationship between adult abundance and a visual estimate of the amount of young foliage on trees. 6. Adults of C. bimaculata are show n to occur in relatively small, mobile aggregations. This means that pest surveys must be both regular (less than 2 weeks apart) and intensive (with sampling points no more than 150 m apart) if beetle populations are to be monitored with confidence. Further refinement of the current IPM strategy must recognize the problems posed by this temporal and spatial patchiness, particularly with regard to the use of biological insecticides, such as Bacillus thuringiensis, for which only a very short operational window exists.
Resumo:
The effects of the mode of exposure of second instar Colorado potato beetles to Beauveria bassiana on conidia acquisition and resulting mortality were investigated in laboratory studies. Larvae sprayed directly with a B, bassiana condial suspension, larvae exposed to B, bassiana-treated foliage, and larvae both sprayed and exposed to treated foliage experienced 76, 34, and 77% mortality, respectively. The total number of conidia and the proportion of germinating conidia were measured over time for four sections of the insect body: the ventral surface of the head (consisting mostly of ventral mouth parts), the ventral abdominal surface, the dorsal abdominal surface, and the legs. From observations at 24 and 36 h posttreatment, mean totals of 161.1 conidia per insect were found on sprayed larvae, 256.1 conidia on larvae exposed only to treated foliage, and 408.3 conidia on larvae both sprayed and exposed to treated foliage, On sprayed larvae, the majority of conidia were found on the dorsal abdominal surface, whereas conidia were predominantly found in the ventral abdominal surface and mouth parts on larvae exposed to treated foliage, Between 24 and 36 h postinoculation the percentage of conidia germinating on sprayed larvae increased slightly from 80 to 84%), On the treated foliage, the percentage of germinated conidia on larvae increased from 35% at 24 h to 50% at 36 h posttreatment, Conidia germination on sprayed larvae on treated foliage was 65% at 24 h and 75% at 36 h posttreatment, It is likely that the gradual acquisition of conidia derived from the continuous exposure to B. bassiana inoculum on the foliar surface was responsible for the increase in germination over time on larvae exposed to treated foliage, The density and germination of conidia were observed 0, 4, 8, 12, 16, 20, and 24 h after being sprayed with or dipped in conidia suspensions or exposing insects to contaminated foliage, Conidia germinated twice as fast on sprayed insects as with any other treatment within the first 12 h, This faster germination may be due to the pressure of the sprayer enhancing conidial lodging on cuticular surfaces. (C) 2001 Academic Press.
Resumo:
Laboratory studies investigated the interaction between the fungal entomopathogen Beauveria bassiana (Balsamo) Vuillemin and sublethal doses of the insecticides imidacloprid and cyromazine when applied to larvae of the Colorado potato beetle, Leptinotarsa decemlinenta (Say). When second instars were fed potato leaf discs treated with sublethal doses of imidacloprid and a range of doses of B. bassiana, a synergistic action was demonstrated. Similar results were observed when larvae were sprayed directly with B. bassiana conidia and immediately fed leaf discs treated with imidacloprid. No synergistic interaction was detected when larvae were fed leaf discs treated with sublethal doses of imidacloprid 24 h after application of R. bassiana conidia to larvae. However, a synergistic interaction was detected when larvae were fed leaf discs treated with imidacloprid and sprayed with B, bassiana conidia 24 h later. Although sublethal doses of both imidacloprid and the triazine insect growth regulator (IGR) cyromazine prolonged the duration of the second instar, only imidacloprid interacted with B. bassiana to produce a synergistic response in larval mortality. In leaf consumption studies, the highest dose of B, bassiana tested promoted feeding in inoculated second instars. Feeding was inhibited when larvae were fed foliage treated with sublethal doses of imidacloprid and significantly reduced when fed foliage treated with a sublethal dose of cyromazine. Starvation of larvae for 24 h immediately after B. bassiana treatment produced a similar result to the combined treatment of B. bassiana and imidacloprid and increased the level of mycosis when compared with B. bassiana controls. Imidacloprid treatment affected neither the rate of germination of B. bassiana conidia on the insect cuticle nor the rate at which conidia were removed from the integument after application. The statistical analysis used to detect synergism and the possible role of starvation-induced stress factors underlying the observed synergistic interactions are discussed.
Resumo:
[GRAPHICS] The major cuticular hydrocarbons from the cane beetle species Antitrogus parvulus were deduced to be 4,6,8,10,16,18-hexa- and 4,6,8,10,16-pentamethyldocosanes 2 and 3, respectively. Isomers of 2,4,6,8-tetramethylundecanal 27, 36, and 37, derived from 2,4,6-trimethylphenol, were coupled with the phosphoranes 28 and 29 to furnish alkenes and, by reduction, diastereomers of 2 and 3. Chromatographic and spectroscopic comparisons confirmed 2 as either 6a or 6b and 3 as either 34a or 34b.